Common diseases of cotton

Stephen Allen, Cotton Seed Distributors
Linda Smith, Linda Scheikowski, Cherie Gambley,
Murray Sharman, DAFF Qld
Susan Maas, CRDC
Karen Kirkby, Peter Lonergan, NSW DPI

Seedling diseases
There have been over 30 species of fungi isolated from dying cotton seedlings. Death of seedlings is often referred to as ‘damping off’ but is mainly caused by Rhizoctonia solani; Pythium spp. and Fusarium spp. (not Fusarium wilt)

Symptoms
Pre-emergent seed rots. Post-emergent wilting, collapse and death (damping-off). Slow early season growth, small cotyledons and reddened hypocotyls, lesions on roots.

Favoured by
Anything that slows down germination and seedling growth favours infection by seedling disease. This includes cool and/or wet weather, poorly formed beds, compaction, waterlogging, incorrect planting depth, fertiliser under the plant line, excessive rates of planting herbicide, movement of herbicide into root zone (ie by rain) and infection by other pathogens.

Host range
These pathogens have wide host ranges and can survive on residues of many crops and weeds.

IDM tactics
• Delay sowing if possible, until soil temperature is 16°C and rising.
• Use a variety with good seedling vigour.

Black root rot
Thielaviopsis basicola

Symptoms
Affected crops may be slow growing or stunted, especially during the early part of the season. The disease causes destruction of the root cortex (outer layer), seen as blackening of the roots. Some roots may die but T. basicola does not kill seedlings by itself. Severe Black root rot opens the root up for infection by Pythium or Rhizoctonia. Plants that are badly affected early in the season may not continue to show symptoms later in the season as the dead cells of the root cortex are sloughed off when growth resumes in warmer weather.

Host range
The host range of T. basicola includes all varieties of cotton, most legumes including faba bean, soybean, cowpea, field pea, chickpea, mung bean, lablab and lucerne. Datura weeds (thornapple, caster oil) are also hosts, but little is known about other weeds. Non hosts include all the cereal crops, sunflower, canola and vetch.

IDM tactics
• Choose varieties that can ‘catch up’.
• Use Bion seed treatment.
• Prepare beds well (‘high and firm’ not ‘low and loose’).
• Pre-irrigate and/or plant into moisture.
• Delay sowing if possible, until soil temperatures are 16°C and rising.
• Rotate with biofumigation crops such as vetch or mustard.
Avoid legumes and control weeds.
Minimize your tailwater.
Always practice good farm hygiene.
Summer flooding if possible.

Verticillium wilt
Verticillium dahliae

Recent research has found that there is more than one strain of *Verticillium dahliae* as well as variation in the virulence within strains in Australian cotton.

Symptoms

Leaf mottle – yellowing between the veins and around the leaf margins, vascular discoloration or browning extending throughout the stem and into the petioles, root system otherwise healthy, some defoliation may occur if cool.

Internal symptoms can be checked by cutting the stem. The vascular tissue of an infected plant will reveal flecking brown discoloration extending throughout the stem and into the petioles. Under Australian conditions with Australian strains of the pathogen, all plants with vascular symptoms will also display foliar symptoms.

The discoloration is similar to that of Fusarium wilt but usually appears as flecking rather than continuous browning. Severe cases often need to be tested by a pathologist to determine whether the pathogen is Fusarium or Verticillium.

The root system appears otherwise healthy.

Favoured by

Resistance to the disease is temperature sensitive. Varieties that are resistant at 25°C–27°C are susceptible at 20°C–22°C. The disease is most severe during extended wet weather and/or waterlogging and in late maturing crops. The disease is favoured by excessive use of nitrogen which results in late season growth and also by potassium deficiency.

Host range

V. dahliae has a large host range which includes sunflower, soybean, noogoora and bathurst burr, saffron thistle, thornapple, caustic weed, bladder ketmia, burr medic, black bindweed, pigweed, devils claw, turnip weed, mintweed, blackberry nightshade and others.

Non-host crops include sorghum and cereals.

IDM tactics

- Select varieties with a high V.rank.
- Manage for earliness, including optimising nutrition and water inputs.
- Avoid late season irrigations.
- Incorporate cotton residues soon after harvest.
- Rotate with non-hosts such as cereals or sorghum.
- Control alternative weed hosts.
- Minimize your tailwater.
- Come Clean Go Clean.

Fusarium wilt
Fusarium oxysporum var. vasinfectum (FOV)

Symptoms

External symptoms include stunted growth and dull and wilted leaves followed by yellowing or browning of the leaves and eventual death from the top of the plant. Some affected plants may reshoot from the base of the stem. External symptoms can appear in the crop at any stage. Most commonly they become apparent in the seedling phase when plants are beginning to develop true leaves, or after flowering during boll fill. Symptoms can appear as only a few, individual plants or as a small patch, often but not always, in the tail drain or low-lying areas of the field.

Internal symptoms can be checked by cutting the stem. An affected plant will reveal continuous brown discoloration of the stem tissues running from the main root up into the stem. The discoloration is similar to that of Verticillium wilt but usually appears as continuous browning rather than flecking.

Favoured by

Use of susceptible varieties. Stresses in the crop such as waterlogging, root damage through cultivation and cool, wet growing conditions. Spores surviving in soil and on crop residues can be spread by overland flows, in irrigation water and attached to people and machinery.

Host range

The FOV pathogen is specific to cotton but can live on the residues of most non-host crops. Known alternative weed hosts include bladder ketmia, sesbania pea, dwarf amaranth, bellvine and wild melon.

IDM tactics

- Select varieties with a high Frank
- Delay planting if possible until soil temperatures are 16°C and rising.
Ideal root pull, with crop residues slashed and retained on the surface for at least one month prior to incorporation.

- Rotate with non-hosts for up to 3 years. Hosts such as legumes can potentially increase disease. A summer sorghum/maize-fallow-cotton rotation can increase cotton plant survival, reduce disease incidence and increase yield in the third year compared to continuous cotton.

- Fusarium can survive on non-host crop residues, so residues should be buried or baled as soon as possible after harvest. Avoid green manure crops.

- Avoid inter-row cultivation

Alternaria leaf spot

Alternaria macrospora

Alternaria alternata

Most commercial varieties of cotton are relatively resistant to Alternaria and the impact of the disease on yield is insignificant, unless the crop is severely affected with premature senescence associated with potassium deficiency. Pima cotton is very susceptible.

Symptoms – A. macrospora

Brown, grey brown or tan lesions 3–10 mm in diameter on lower leaves, sometimes with dark or purple margins. Circular dry brown lesions on bolls.

Pima varieties can defoliate rapidly when the environment favours the disease.

Symptoms – A. alternata

Purple specks or small lesions with purple margins on bolls and leaves.

Favoured by

Heavy dews or extended periods of wet weather resulting in long periods of free moisture on the leaf. Suppressed by hot dry weather. Nutritional stress can favour development. Pima varieties are quite susceptible.

Host range

Cotton, bladder ketmia, sida and anoda weed.

IDM tactics

- Manage crop to avoid extremely rank growth.

- Foliar fungicide sprays are available for the control of Alternaria leaf spot on Pima cotton.

Boll rot and Tight lock

Boll rots are caused by a number of pathogens including fungi and bacteria. Tight lock refers to a type of boll rot, where the lock remains hard and fails to fluff out.

Symptoms

- Bolls infected by Phytophthora nicotiana var parasitica appear dark brown to black, sometimes with areas of white mould on the surface. Phytophthora boll rot usually occurs when soil is splashed up onto low bolls that are beginning to crack open or when low bolls are subject to inundation. Fusarium boll rot (not Fusarium wilt) causes similar boll rots, with mould sometimes having a pink discolouration. Diplodia boll rot starts as dark brown lesions which rapidly expand to cover the whole boll as rot progresses. In the later stages of development, bolls become covered in a black smut-like fungal growth which can easily be rubbed off the boll surface.

- Sclerotinia boll rot characteristically has black sclerotia (2 to 10mm diameter) within and/or on the surface of the rotted bolls. A white cottony fungal growth may be present and the branch adjacent to the bolls may be affected. The sclerotia germinate to produce apothecia (small cream coloured ‘golf tees’ – not to be mistaken for bird’s nest fungi) which release clouds of microscopic spores that can only infect the plant through dead or dying tissue. The fungus then grows into healthy plant tissue such as the developing boll and down the fruiting branch towards the main stem. Several other fungi can cause secondary boll rots in cotton, taking advantage of wounds in boll wall.

Favoured by

Boll rots are favoured by wet and humid conditions especially from a thick rank canopy and high moisture from rains and dews.

- Rainfall on exposed soil that splashes soil up onto low bolls enables infection for some boll rots. Low mature bolls and lodged plants are at high risk of infection.

- Boll rots and tight locks can also develop when bolls that are opening are exposed to wet weather.

Host range

There are a broad range of fungi and bacteria involved in boll rots and host range varies between species.

IDM tactics

- Manage crop to avoid extremely rank growth.

Cotton bunched top (CBT)

CBT, a viral disease, is spread by the cotton aphid (*Aphis gossypii*, Glover).

Symptoms

- Symptoms include reduced plant height, leaf size, petiole length, internode length and boll size. Leaf symptoms are usually an angular pattern of pale green leaf margins with darker green centres. The angular patches turn red as leaves age. Leaves are leathery and brittle compared to leaves on healthy plants. Usually a period of 3–8 weeks lapses between infection and when symptoms first appear. Affected plants often occur in patches or crop edges and are associated with areas of highest aphid activity. When plants become infected very early, the growth of the whole plant is affected taking on a compact, stunted, ‘climbing ivy’ appearance.
Early infection has the greatest potential to reduce yield. The extent to which yield is affected also depends on the proportion of plants infected. If the proportion infected is high (>50%), yield may be reduced.

Favoured by

CBT can only survive in living plants. Fields at highest risk of CBT are those with high aphid populations, in close proximity to ratoon cotton. Ratoons act as both a preferred host for the aphids and a reservoir for the disease, creating a source of infection in the new season. Disease spread is favoured by climatic conditions suitable for aphid reproduction, feeding and spread. The risk from CBT is probably higher after wet winters and lower after dry winters. Cotton aphid has a broad host range, including many weeds. The presence of weed hosts allows cotton aphid populations to persist overwinter, increasing the likelihood of aphids moving into cotton early in the season.

Host range

The most critical alternative host plant is ratoon or volunteer cotton. They survive between seasons, retaining leaves through winter and supporting infected aphid populations from one season to the next. Seven natural field hosts and one experimental host CBT have been identified. These include cotton, Malva parviflora (Marshmallow weed), Abutilon theophrasti (Velvetleaf), Anoda cristata (Spurred anoda), Hibiscus sabdariffa (Rosella), Sida rhombifolia (Paddy’s lucerne), Chamaesyce hirta (Asthma plant) and Gossypium australe.

These are currently the only known hosts of CBT. However the virus may have a wider host range than originally thought and include further non-Malvaceae species that are like asthma plant (family Euphorbiaceae).

IDM tactics

1. Avoid the problem
 - Break the green bridge. Elimination of hosts, particularly over winter, is the most effective means of minimising CBT risk.
 - Good crop destruction and control of ratoons and volunteers is critical for controlling CBT and cotton aphid.
 - Good farm hygiene to control broad leaf weeds will reduce the risk of cotton aphid.

2. Manage the risk
 - Don't over-react to aphids. Excessive use of aphicides will select resistance and restrict control options.
 - If aphid populations are unhealthy (many beneficials present, high mortality and little spread) then keep monitoring. If healthy then consider selective control so that beneficials can provide ongoing mortality.
 - If a high influx of aphids is experienced consider a quick selective control to reduce the risk of CBT infection.
 - Maintain the beneficial complex to help control aphids.

Reniform Nematode

Reniform nematodes (Rotylenchulus reniformis) have been confirmed as affecting cotton in some fields in Central Qld.

Symptoms

Feeding causes damage to the plant resulting in stunting and generally poor plant growth. Populations can be quite uniform in their distribution across a field, making detection of early plant symptoms difficult.

Presence/absence sampling

Growers and consultants across the industry are asked to monitor for patches of unexplained unthrifty or stunted plants and send a sample of soil if concerned.

1. Mark patches with GPS or on a map so that they can be monitored next season.
2. Scrape off the dry top soil and sample 10-15cm deep using a small trowel or soil corer.
3. If there is more than one patch in a field, collect multiple samples from these areas in a bucket, and mix through.
4. Place approximately 400g in a clearly labelled plastic bag.
5. Postage and handling - The extraction process relies on live nematodes so please keep cool in an esky without an ice brick, and do not store samples in the fridge. Never send a sample on a Thursday or a Friday. Label samples with permanent marker towards the bottom of the bag. Include a sample sheet with:
 - Sample site (farm/field name and GPS references);
 - Date and time sampled; and,
 - Contact name, number and email address.

Contact Linda Smith, DAFF Qld, 07 32554356 for details.

IDM tactics

- Rotating with non-host crops such as wheat or sorghum reduces nematode levels.
- Management of cotton stubble is important. Cotton stalks should be cut and soil tilled through the stubble zone immediately after harvest (or as soon as is feasibly possible) to destroy these breeding sites.
- Ensure root-cutting is successful and there is no re-growth.
- Bare fallows are a very good management option. However success depends on having no host plants in the fallow (cotton or weedy hosts), and the length of the fallow because the longer the better.
- Plant into good conditions including optimum soil temperature, no water stress and well formed beds.
This document is part of a larger publication -

The complete document can be found on the CRDC or myBMP web sites during the 2014-15 Australian cotton season
www.crdc.com.au
or
www.mybmp.com.au

DISCLAIMER

This document has been prepared by the authors for CRDC in good faith on the basis of available information.
While the information contained in the document has been formulated with all due care, the users of the document must obtain their own advice and conduct their own investigations and assessments of any proposals they are considering, in the light of their own individual circumstances.
The document is made available on the understanding that the CRDC, the authors and the publisher, their respective servants and agents accept no representation, statement or information whether expressed or implied in the document, and disclaim all liability for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information claimed in the document or by reason of any error, omission, defect or mis-statement (whether such error, omission or mis-statement is caused by or arises from negligence, lack of care or otherwise).
Whilst the information is considered true and correct as at 31 August 2014, changes in circumstances after the time of publication may impact on the accuracy of the information. The information may change without notice and the CRDC, the authors and the publisher and their respective servants and agents are not in any way liable for the accuracy of any information contained in this document.
Recognising that some of the information is provided by third parties, the CRDC, the authors and the publisher take no responsibility for the accuracy, currency, reliability and correctness of any information included in the document provided by third parties.
The product trade names in this publication are supplied on the understanding that no preference between equivalent products is intended and that the inclusion of a product does not imply endorsement by CRDC over any other equivalent product from another manufacturer.
ISSN 1442-8462
Production by Greenmount Press, 2014

Liberty® and Liberty Link® are Registered Trademarks of Bayer.
Bollgard II®, Roundup Ready Flex® and PLANTSHIELD® are registered trademarks of Monsanto Technology LLC used under licence by Monsanto Australia Ltd.