Insecticide Resistance Management Strategy (IRMS) for 2014–15

Lisa Bird and David Larsen, NSW DPI
Sharon Downes and Lewis Wilson, CSIRO
Melina Miles, DAFF Qld
Tracey Leven, CRDC

The use of pesticides selects for resistance in pest populations. The cotton industry IRMS seeks to manage the risk of resistance in aphids, mites and Helicoverpa spp., both in conventional and Bollgard II cotton. Additional resistance management requirements are also in place for managing the risk of Helicoverpa spp. developing resistance to Bollgard II (pages 77–81). Below, the key elements of the IRMS are described and questions regarding the design and reasons for the IRMS are answered. In this document, the term ‘insecticide’ refers generally to pesticides used for insect or mite control. The resistance risk management for silverleaf whitefly is built into the Silverleaf Whitefly Threshold Matrix (page 30).

Checklist

- Use recommended thresholds for all pests to minimise insecticide use and reduce resistance selection. Refer to Table 17 pages 41–42.
- Monitor first position fruit retention at flowering and aim to retain at around 60% or alternatively maintain a fruiting factor of between 1.1 and 1.3. Refer to IPM section page 49.
- Avoid repeated applications of products from the same insecticide group, including BT products, even when targeting different pests. Rotate between groups. Consider seed treatment as a ‘spray’ and do not apply a first foliar spray from the same insecticide group as the seed treatment.
- Do not exceed the maximum recommended use limits indicated on the Insecticide Resistance Management Strategy charts for cotton (see pages 66–69).
- Do not respray an apparent failure with the same product or another product from the same insecticide group. Rotate to a different group.
- For all pest species, aim to use the most selective insecticide options first, delaying the use of broad spectrum insecticides for as long as possible. On the IRMS charts the options are arranged from top to bottom in order of selectivity. Using the most selective option helps conserve beneficial insects, reducing the chance of mite, aphid and silverleaf whitefly outbreaks.
- Monitor mite populations regularly after seedlings emerge. If established mite populations are present (5–10% of plants infested) avoid using broad-spectrum insecticides to control other pests. Instead use selective options or options that also control or suppress mites, either alone or in mixtures as required.
- Avoid early season use of omethoate or dimethoate. When targeting mirids, avoid early season dimethoate/omethoate use as it will select catastrophic pirimicarb resistance in aphids.
- Control weeds and volunteer cotton on farm to minimise alternative hosts for mites, aphids and silverleaf whitefly through winter and particularly in the lead up to cotton planting.
- Cultivate cotton and residues of alternative host crops as soon as possible after harvest to destroy overwintering H. armigera pupae, particularly if crops are defoliated after 9 March. In Bollgard II fields, cultivation must be completed before the end of July.
- Comply with any use restrictions placed on insecticides used on other crops. This will reduce the chance of prolonged selection for resistance over a range of crops.

Your questions answered

How was the 2014–15 IRMS decided?

The development of the Insecticide Resistance Management Strategy is driven by the Transgenic and Insect Management Strategies (TIMS) Committee. TIMS is a part of Cotton Australia. The results from the insecticide and miticide resistance monitoring programs, carried out during the season, are used to inform the committee of any field-scale changes in resistance levels. Extensive communication and discussion with cotton growers and consultants is undertaken in all regions of the Australian cotton industry before TIMS finalises their recommendations. Communication is critical for ensuring that the IRMS is practical and can be implemented.

How do insects develop resistance?

Resistance is an outcome of exposing pest populations to a strong selection pressure, such as an insecticide. Genes for resistance naturally occur at very low frequencies in insect populations. They remain rare until they are selected for with a toxin, either from an applied pesticide or from within Bollgard II. Once a selection pressure is applied, resistance genes can increase in frequency as the insects carrying them are more likely to survive and produce offspring. If selection continues, the proportion of resistant insects relative to susceptible insects may continue to increase until reduced effectiveness of the toxin is observed in the field.

On the IRMS chart, what do the colours for the various products represent?

In the IRMS charts, the different colours for the various products correspond to maximum usage restrictions. Abamectin and Emamectin (Affirm) can individually have maximum of two applications however a maximum of three applications is allowed from these two products. In addition to colours please be aware of additional restrictions at side and footnoted. Insecticide groups are listed on page 69. Rotate to an insecticide from a different mode of action group.

What is the scientific basis of the IRMS?

The basis of the IRMS is to minimise selection across consecutive generations of the pest. Pest life cycles therefore determine the length of the ‘windows’ around which the IRMS is built. As the life cycles of Helicoverpa spp. and the sucking pests are very different, the strategy for one will not manage resistance for the other.

Helicoverpa spp.

Ideally the length of the ‘windows’ would be 42 days (average time from egg to moth) to minimise the selection pressure across consecutive generations. Most chemicals are restricted to windows of between one...
Successful bales require early protection. DuPont™ Exirel® insecticide is a new technology that works fast to control Caterpillars, Silverleaf whiteflies and Aphids to stop them damaging crops, while safeguarding beneficial insects. It delivers the extra protection all cotton varieties need.

Learn more at cottonsolutions.com.au

ALWAYS REFER TO THE LABEL BEFORE USE. Copyright ©2013 E. I. du Pont de Nemours and Company or its affiliates. All rights reserved. The DuPont Oval Logo, DuPont™ Cyazypyr® and Exirel® are trademarks or registered trademarks of E. I. du Pont de Nemours and Company or its affiliates.
and two generations to account for the practicalities of pest control.
To counteract this compromise there are additional restrictions on the
total number of applications for each chemical group.

Sucking pests – mites and aphids

The resistance strategy for the short life cycle pests depends on rotation of
insecticides/miticides between different chemical groups (different modes of
action) to avoid selection over successive generations. Non-consecutive uses of
chemicals is particularly important for aphids as they reproduce
asexually. All offspring from a resistant aphid will be resistant. There are
also restrictions on the maximum number of uses for individual products
and chemical groups to further encourage rotation of chemicals.

Mirids

Mirids aren’t known to have developed resistance to insecticides in
Australian cotton. Currently there is no resistance monitoring program for
mirids. However it is possible that resistance could develop. As the IRMS
include all insecticides registered for use in cotton, the principles behind
the IRMS are applied to mirids. Many of the products registered for mirid
control in cotton are also registered for the control of other pests. It is
critical that mirid control decisions also consider sub-threshold populations of
other pests that are present in the field. Using dimethoate/omethoate
for the control of mirids can inadvertently select for both dimethoate/
omethoate and pirimicarb resistance in aphids. Use of clothianidin (Shild)
for mirid control can inadvertently select for neonicotinoid resistance in
aphids. Do not apply a first foliar spray from the same insecticide group as
the seed treatment (4A). When selecting an insecticide for mirid control,
consider the options that are left open for subsequent aphid control, in case
the need arises.

Does the IRMS seek to manage resistance in Silverleaf Whitefly (SLW)?

The IRMS has now been modified to include all commercially available
products registered for use in cotton, including SLW. Inclusion is based on
the SLW threshold matrix which is designed to minimise the need to
intervene with chemical control as well as to delay the development of resistance.

Refer to the SLW Threshold Matrix, page 31, for additional industry
recommendations on the best way to utilise the available products with the
lowest risk of developing resistance.

How do refuges help manage resistance to Bt in Bollgard II, and do they help manage resistance to insecticides in Helicoverpa?

Growing refuge crops is a pre-emptive resistance management strategy that is implemented to retard the evolution of field-scale resistance to
Bollgard II. The success of the refuge strategy depends on the majority of
the general population being susceptible (SS) to the toxins in Bt-cotton. When a susceptible moth mates with a resistant moth (RR), the offspring
carry one allelic from each parent (RS). These offspring are referred to as
heterozygotes. In the cases of Bt resistance that have so far been identified,
heterozygotes are still controlled by Bollgard II cotton.

Refuges are able to help manage Bt resistance through the generation of
SS moths. If RR moths are emerging from Bollgard II fields, they are
more likely to mate with SS moths if a refuge has been grown. The RS
offspring is susceptible to Bollgard II and an increase in the frequency of RR
individuals can be retarded.

This is not always the case for resistances to other insecticides. For
many of the conventional insecticides (to which resistance has already
developed), resistance mechanisms are functionally dominant. This means
that heterozygotes (RS) survive the application and can make up a large part of
the resistant population. In such circumstances the dilution effect created
by refuges is far less effective.

While refuges cannot assist when insecticide resistance is already
prevalent in the field population, such as with synthetic pyrethroids,
there may be some benefit from the unsprayed refuge options for new
chemistries. Unsprayed refuges will produce moths that have not been
exposed to insecticide selection pressure.

Why is there a Northern, and Southern/Central IRMS?

The IRMS has always accounted for pest movement among different
cotton growing regions. For example several field studies have shown that
Helicoverpa spp. moths can travel large distances. Recently, some genetic
work showed that mirids move longer distances between regions. Insecticide
resistance in one region can therefore spread to other regions by pest
migration. The TIMS Committee designs the IRMS to reduce the chance that
pests moving between regions would be reselected repeatedly by the same
insecticide group. This is done by limiting the time period over which most
insecticides are available. The two strategies accommodate the different
growing seasons from central Queensland through to southern NSW.

Will the large uptake of Bollgard II reduce the population sizes of Helicoverpa spp.?

H. armigera is closely linked with cropping regions and the widespread
use of Bollgard II may be affecting the size of natural populations of this
pest. In most seasons, the majority of moths are locally generated, so
Bollgard II may be acting as a ‘sink’ and influencing the overall population
size. However, this species uses hosts other than cotton, so even with
widespread use of Bollgard II, population sizes are likely to also be
regulated by the abundance of these alternative hosts.

In contrast, large populations of *H. punctigera* moths can be generated in
inland areas and migrate to cotton growing regions. In this case, as
moths are generated in other environments, Bollgard II will have little effect
on the size of these populations, especially early in the season following the
annual spring migration events of this species. However the size of these
populations will be strongly influence by the availability of hosts in inland
areas and stop over points along the way, which is largely determined by
rainfall and degree of land degradation. Years where inland areas receive
little rainfall may produce few migrating moths, and even large populations
may be prevented from migrating to cropping regions if suitable habitat
along the way is absent.

Why do we need an IRMS in conventional cotton when there are such large areas of Bollgard II?

Whenever insecticides are used there is selection pressure for
resistance. In Bollgard II cotton, aphids, mites, mirids and silverleaf whitefly
are no longer secondary pests. More often than not, it is this range of
pests that require intervention with foliar insecticides to protect cotton yield
and quality and as such there is a risk of resistance developing in these
populations. The IRMS chart seeks to directly manage the risk of resistance
in pests as well as reduce risk of inadvertant selection of pests that are not
the primary target of the insecticide.

Large areas of Bollgard II will not change the frequencies of resistance
genes being carried by *H. armigera* moths. The same proportion of
resistant and susceptible moths will continue to lay eggs in cotton – be it
conventional or Bollgard II. Hence the likelihood of resistance development
to foliar and soil applied insecticides remains the same, even if the overall size of the H. armigera population is reduced. Continuing to follow the IRMS will ensure that the industry retains the ability to control H. armigera effectively with insecticides on conventional cotton both now and in the future. The IRMS should always be consulted when making a spray decision, even in Bollgard II cotton.

When do stage windows start and stop?

The dates shown on the strategy charts are for the start of each stage. Windows will start at 00:01 h on the date shown as the start (e.g. 15 December for Stage 2 in Central areas) and end at midnight 24:00 h on the day before the start of the next window (e.g. 1 February for Stage 2 in Central areas). For those individual insecticides and miticides that start or end outside window boundaries, the start and end dates are specified and the same principles apply.

What do the terms cross-resistance and multiple resistance mean? How can they be minimised?

Cross-resistance occurs when selection for resistance against one pesticide also confers resistance to another pesticide, either from the same mode of action group or a different group. For example, the mechanism for pirimicarb resistance (Group 1A) in aphids also gives resistance to dimethoate/dimethoate (Group 1B). Cross-resistance is important as it means that a pest may be resistant to a chemical to which it has never been exposed (i.e. without selection pressure).

Multiple resistance simply means that an insect is resistant to more than one mode of action group. For instance, H. armigera can have metabolic resistance to synthetic pyrethroids (Group 3A) and nerve insensitivity to organophosphates (Group 1B).

The development of both cross-resistance and multiple resistance can be minimised by following the IRMS. The strategy is designed to manage both of these occurrences. For example, in the strategy for aphids, there is a break between the use of pirimicarb and dimethoate/dimethoate during which other chemistries should be used. The use of alternative chemistries should minimise the number of pirimicarb resistant aphids being exposed to dimethoate/dimethoate.

Is pupae busting in conventional cotton still important for resistance management?

Yes. Pupae busting is an effective, non-chemical method of preventing resistance carryover from one season to the next. The pupae busting guidelines for sprayed conventional cotton are based on the likelihood that larvae will enter diapause before a certain date, allowing for removal of pupae busting operations in field specific situations. The estimated commencement date of diapause is based on the model which drives the Helicoverpa Diapause Induction and Emergence Tool on CoASSIST. The model was developed from field research conducted on the Darling Downs by DAFF Qld and has broad application to farming systems in eastern Australia. The web tool predicts the timing of diapause.

Post Harvest Pupae Destruction statement

Sprayed conventional cotton crops defoliated after the 9th March are more likely to harbour insecticide resistant diapausing Helicoverpa armigera larvae and should be pupae busted as soon as possible after picking and no later than the end of July.

How does the use of insecticide mixtures fit in the IRMS?

When used repeatedly, mixtures are high-risk and a controversial strategy for managing resistance. They can undermine the IRMS by repeatedly selecting for resistance to the common components in mixtures and by selection for resistance across multiple chemical groups. When mixtures are used frequently, it becomes difficult to determine whether each component is contributing equally to efficacy.

The use of mixtures to overcome the effects of resistance requires very careful consideration. As a general rule, mixtures are unnecessary in situations where individual products provide adequate control.

Several criteria need to be met for mixtures to be effective.

Components of the mixture should:

- Be equally persistent;
- Have different modes of action;
- Not be subject to the same routes of metabolic detoxification; and,
- Be tank-mix compatible.

In addition, the majority of the pest population should not be resistant to any component of a mixture, as this may render it a redundant or ‘sleeping partner’ in terms of insect control. When very heavy Helicoverpa spp. pressure occurs and egg parasitism percentages have been low, include an ovicide (e.g. amitraz and methomyl) in sprays to take the pressure off larvae/cides. When targeting sprays against eggs and very small larvae do not expect 100% control with any insecticide or mixture of insecticides. If larval numbers are reduced below threshold then the treatment should be regarded as effective. Some mix partners provide more than additive kill (synergism), but this is not always the case. The CropLife Australia Insecticide Resistance Management Group, recommend that no two compounds from the same chemical group/mode of action be included in a mixture (www.croplife.org.au/industry-stewardship/resistance-management/). The repeated use of any insecticide with different mix partners will also increase selection for resistance.

It is illegal to use rates above those recommended on the label of an insecticide alone or in mixtures. Efficacy will not always improve at rates above the highest label rate or if two insecticides of the same chemical group are applied as a mixture.

Can emergency changes be made to the IRMS during the season?

Yes, the TIMS Troubleshooting Committee (TTC) was established by TIMS to act on its behalf to respond quickly to requests to vary the Strategy temporarily for specific regions. The TTC is not able to approve major changes to the Strategy – that is the role of the TIMS Committee.

What is the process for requesting a within-season change to the IRMS?

The TIMS Troubleshooting Committee (TTC) has put in place a clear process for handling requests for within-season changes to the IRMS.

A request to temporarily alter the Strategy for a district or part of a district can be initiated by any grower or consultant, but it will not be considered by the TTC unless it is presented with clear evidence of having been discussed and gained majority support at a local level. This will include:

- Evidence that the local consultants who might be affected by the requested alterations have discussed them and are in agreement.
- A request from the local Cotton Growers Association (CGA) that outlines the problem and the preferred solution.
- Evidence that all reasonable efforts have been made to apply the alternatives available within the strategy.

Evidence that all reasonable efforts have been made to apply the alternatives available within the strategy.

Evidence that the local consultants who might be affected by the requested alterations have discussed them and are in agreement.

A request from the local Cotton Growers Association (CGA) that outlines the problem and the preferred solution.

Evidence that all reasonable efforts have been made to apply the alternatives available within the strategy.
The request can be faxed or emailed to Lewis Wilson. A return contact name and phone number should be included so that receipt of the request can be acknowledged and further discussion can be held with a TTC member if required. All members of the TTC will be faxed or emailed the request and asked to respond to an ACRI contact point by 10 a.m. the following morning (or the next working day if the request is lodged on a weekend or public holiday). A decision will then be made and a response issued by 12 noon. All reasonable efforts will be made to meet this level of response, however it should be recognised that complex or poorly communicated requests may take longer to resolve.

The granting of a request by the TTC to temporarily alter the Resistance Strategy applies to a specific district. It does not confer the same temporary changes to other districts unless they have also lodged a request to the TTC in the manner outlined above. TTC changes for a region have a limited duration and do not carry over from one season to the next.

Considerations following a suspected spray failure

In the event of a suspected pest control failure, don’t panic as it is important to assess the situation carefully before deciding on a course of action. The presence of live pests following an insecticide application does not necessarily indicate insecticide failure. What is the insecticide’s mode of action? Has it been given enough time to work? Products such as thiodicarb, foliar Bt, NPV and indoxacarb are stomach poisons and may not give maximum control until 5–7 days after application. Similarly, propargite, abamectin, pyrithroxifen and diafenthiuron are slow acting and may take 7–10 days or longer to achieve maximum control. In some instances pest infestation levels remain high following a treatment but little if any economic damage to the crop occurs (e.g. if the pests are sick and have ceased feeding).

When diagnosing the cause of an insecticide failure, it is important to remember that there are a wide range of variables that influence insecticide efficacy. These include species complex, population density and age, crop canopy structure, application timing, the application method, carrier and solution pH – and their effects on coverage and the insecticide dose delivered to the target, environmental conditions, assessment timing and insecticide resistance expressed in the pest population. For every insecticide application, it is the interaction of all of these factors that determines the outcome. While it will not be possible to optimise all of these variables all of the time, when more compromises are made, there is a greater likelihood that efficacy will be unsatisfactory.

It is also important to maintain realistic expectations of the efficacy that can be achieved. For example, do not expect satisfactory control of medium and large Helicoverpa larvae late in the season, regardless of the insecticide treatment used. If a field failure is suspected to be due to insecticide resistance, collect a sample of the surviving pest from the sprayed field using the industry guidelines and send to the relevant researcher.

- For Helicoverpa, Lisa Bird (02) 6799 1500.
- For mites and aphids, Grant Herron (02) 4640 6333.
- For whitefly, Jamie Hopkinson (07) 4688 1152.

Sending samples for testing can confirm or rule out resistance as the cause of the spray failure and is an important part of assessing the presence of resistance across the industry.

After any spray failure, do not follow up with an application of the same insecticide group alone or in mixture (at any rate). Rotate to an insecticide from a different mode of action group.

TIMS TROUBLESHOOTING COMMITTEE CONTACTS 2014–15

<table>
<thead>
<tr>
<th>Name</th>
<th>Telephone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis Wilson, CSIRO (chair person)</td>
<td>(02) 6799 1550</td>
<td>lewis.wilson@csiro.au</td>
</tr>
<tr>
<td>Sally Ceeney, CottonInfo</td>
<td>0459 189 771</td>
<td>sally@ceenag.com.au</td>
</tr>
<tr>
<td>Cotton Australia</td>
<td>(02) 9669 5222</td>
<td></td>
</tr>
<tr>
<td>Lisa Bird, NSW DPI</td>
<td>(02) 6799 2428</td>
<td>lisa.bird@dpi.nsw.gov.au</td>
</tr>
</tbody>
</table>
CottonInfo, the cotton industry’s joint extension program, is about bringing you the latest news, information, events and research - when and where you need it. The CottonInfo team have available a wide range of publications to help you on your farm - and are standing by to assist you with any questions you may have.

http://tiny.cc/SLmag
http://tiny.cc/acpm
http://tiny.cc/cpmg
http://tiny.cc/cotsymptoms
http://tiny.cc/pestben
http://tiny.cc/waterpak
http://tiny.cc/fibrepak
http://tiny.cc/nutripak
http://tiny.cc/soilpak
http://tiny.cc/spraypak
http://tiny.cc/weedpak
http://tiny.cc/weedid
http://tiny.cc/ipmg
http://tiny.cc/irrigwheat
http://tiny.cc/riparian
http://tiny.cc/cotfishes
http://tiny.cc/birdid
http://www.mybmp.com.au

To access any of these publications, simply type the short URL into your web browser, or visit us at www.mybmp.com.au.
INSECTICIDE RESISTANCE MANAGEMENT STRATEGY 2014/15

Central & Southern Regions: Balonne, Bourke, Darling Downs, Gwydir, Lachlan, Lower & Upper Namoi, Macintyre, Marquette, Marrambidgee

BEST PRACTICE PRODUCT WINDOWS AND USE RESTRICTIONS TO MANAGE INSECTICIDE RESISTANCE IN APHIDS, SILVERLEAF WHITEFLY, MITES AND HELICOVERPA SPECIES.

STAGE 1

- **15 Dec 2014**
 - **Foliar Bacillus thuringiensis** (Dipel)
 - **Helicoverpa viruses** (Gemstar, Vivus)
 - **Pirimicarb**
 - **Paraffinic Oil** (Canopy, Biopest)
 - **Phorate** at planting insecticide
 - **Etoxazole** (Paramite)
 - **GROUP 28:** Max 4/season
 - **Chlorantraniliprole** (Altacor)
 - **Cyantraniliprole** (Exirel)
 - **Dicofol**
 - **Amorphous silica** (Abrade)
 - **Pymetrozine** (Fulfill)
 - **Indoxacarb** (Steward)
 - **Spirotetramat** (Movento)
 - **Sulfoxaflor** (Steward)
 - **Abamectin**
 - **Emamectin** (Affirm)
 - **Amitraz**
 - **Neonicotinoids** (Amparo, Cruiser, Gaucho, Actara, Confidor, Intruder, Shield)
 - **Chlorantraniliprole + Thiamethoxam** (Vomax Flexi)
 - **Fipronil**

STAGE 2

- **15 Jan 2015**
 - **GROUP 28:** Max 4/season
 - **Chlorantraniliprole** (Altacor)
 - **Cyantraniliprole** (Exirel)
 - **Phorate**
 - **Pyriproxyfen**
 - **Pyrimethanil**
 - **Ethofumesate**
 - **Metribuzin**
 - **Metamidophos**
 - **Methiocarb**
 - **Metalaxyl M**
 - **Metalaxyl M (in mixtures)***
 - **Metalaxyl M (in mixtures)***

STAGE 3

- **15 Feb 2015**
 - **GROUP 28:** Max 4/season
 - **Chlorantraniliprole** (Altacor)
 - **Cyantraniliprole** (Exirel)
 - **Pyriproxyfen**
 - **Pyrimethanil**
 - **Ethofumesate**
 - **Metribuzin**
 - **Metamidophos**
 - **Methiocarb**
 - **Metalaxyl M**
 - **Metalaxyl M (in mixtures)***
 - **Metalaxyl M (in mixtures)***

STAGE 4

- **WHICH PRODUCT FOR WHICH PEST?**
 - Refer to Tables 2–18, pages 7–48

WHICH PRODUCT FOR WHICH PEST?

- **Excludes Bollgard II refuges.**
- **Avoid season long use of low rates.**
- **NON CONSECUTIVE APPLICATIONS.**
- **No restrictions.**
- **In a salvage situation, knockdown also required.**
- **Note 1**
- **Group 4C**
- **Group 28**
- **GROUP 28:** Max 4/season
- **Chlorantraniliprole** (Altacor)
- **Cyantraniliprole** (Exirel)
- **Dimethoate / Omethoate**
- **OPs** (chlorpyrifos, methidathion)
- **Synthetic Pyrethroids**
- **GROUP 28:** Max 4/season
- **Chlorantraniliprole + Thiamethoxam** (Vomax Flexi)
- **Neonicotinoids** (Amparo, Cruiser, Gaucho, Actara, Confidor, Intruder, Shield)
- **Fipronil**
- **Neonicotinoids** (Amparo, Cruiser, Gaucho, Actara, Confidor, Intruder, Shield)
- **Fipronil**
- **Pyriproxyfen**
- **Pyrimethanil**
- **Ethofumesate**
- **Metribuzin**
- **Metalaxyl M**
- **Metalaxyl M (in mixtures)***

COMMENTS AND NOTES DESCRIBE ALL USE RESTRICTIONS

- **NO MORE THAN ONE APPLICATION PER SEASON**
- **NO MORE THAN TWO APPLICATIONS PER SEASON**
- **NO MORE THAN THREE APPLICATIONS PER SEASON**
- **NO MORE THAN FOUR APPLICATIONS PER SEASON**

Note 1:
- If a phorate side dressing is used instead of a neonicotinoid seed dressing then do not use pirimicarb or dimethoate/omethoate as first foliar spray as there is cross resistance between them all. Dimethoate/omethoate use will select catastrophic pirimicarb resistance in aphids so do not use pirimicarb and dimethoate/omethoate in the same field.

Note 2:
- Failures of neonicotinoids against aphids have been confirmed. DO NOT follow a neonicotinoid seed treatment with a foliar neonicotinoid when aphids are present. If there is an alternative do not follow a neonicotinoid with sulfoxaflor.

Note 3:
- Cross check with the Silverleaf Whitefly Threshold Matrix, page 29.

Note 4:
- Maximum 2 consecutive sprays, alone or in mixtures.

Note 5:
- Additional applications can be made if targeting Helicoverpa moths using Magnet.

Note 6:
- Sprayed conventional cotton crops defoliated after March 9 are more likely to harbour resistant diapausing Helicoverpa armigera and should be pupae busted as soon as possible after harvest and no later than the end of August.

Note 7:
- Observe Withholding Periods, page 152. Products in this group have WHP 28 days or longer.

Note 8:
- High resistance is present in Helicoverpa armigera populations. Expect field failures.

Note 9:
- Refer to label for warnings of insecticide risk to bee population. Fipronil has long residual toxicity to bees.

Note 10:

STOP OVERWINTERING OF RESISTANT POPULATIONS BY PRACTISING GOOD FARM HYGIENE AND CONTROLLING WINTER HOSTS. PUPAE BUST AFTER HARVEST.

CHECK IMPACTS ON BENEFICIALS, PAGES 8–9.

COTTON PEST MANAGEMENT GUIDE 2014–15

IRMS – sponsored by DOW

The miracles of science
Cotton IRMS

INSECTICIDE RESISTANCE MANAGEMENT STRATEGY 2014/15

BEST PRACTICE PRODUCT WINDOWS AND USE RESTRICTIONS TO MANAGE INSECTICIDE RESISTANCE IN APHIDS, SILVERLEAF WHITEFLY, MITES AND HELICOVERPA SPECIES.

Northern Region: Belyando, Callide Central Highlands, Dawson

Comments and Notes Describe All Use Restrictions

<table>
<thead>
<tr>
<th>Stage</th>
<th>Product</th>
<th>Pests</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Foliar Bacillus thuringiensis (Dipel)</td>
<td>Helicoverpa viruses (Gemstar, Vivus)</td>
<td>Comments and Notes</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Pirimicarb</td>
<td>Increasing</td>
<td>Note 1: If a phorate side dressing is used instead of a neonicotinoid seed dressing then do not use pirimicarb or dimethoate/omethoate as first foliar spray as there is cross resistance between them all. Dimethoate/omethoate use will select catastrophic pirimicarb resistance in aphids so do not use pirimicarb and dimethoate/omethoate in the same field.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Paraffinic Oil (Canopy, Biopest)</td>
<td>start = 1450 Day Degrees</td>
<td>Note 2: Failures of neonicotinoids against aphids have been confirmed. DO NOT follow a neonicotinoid seed treatment with a foliar neonicotinoid when aphids are present. If there is an alternative do not follow a neonicotinoid with sulfoxaflor.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Etoxazole (Paramite)</td>
<td>GROUP 28: MAX 4/SEASON</td>
<td>Note 3: Cross check with the Silverleaf Whitefly Threshold Matrix, page 29.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Amorphous silica (Abrade)</td>
<td>start date = canopy closure</td>
<td>Non-consecutive applications.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Pymetrozine (Fulfil)</td>
<td>Jan 1</td>
<td>Note 4: Maximum 2 consecutive sprays, alone or in mixtures.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Indoxacarb (Steward)</td>
<td>Dec 31</td>
<td>Note 5: Additional applications can be made if targeting Helicoverpa moths using Magnet.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Spirotetramat (Movento)</td>
<td>GROUP 4C</td>
<td>Note 6: Sprayed conventional cotton crops defoliated after March 9 are more likely to harbour resistant diapausing Helicoverpa armigera and should be pupae busted as soon as possible after harvest and no later than the end of August.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Abamectin (Affirm)</td>
<td>start date = squaring</td>
<td>Note 7: Observe Withholding Periods, page 152. Products in this group have WHP 28 days or longer.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Emamectin (Affirm)</td>
<td>Max. 3</td>
<td>Note 8: High resistance is present in Helicoverpa armigera populations. Expect field failures.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Amitraz</td>
<td></td>
<td>Note 9: Refer to label for warnings of insecticide risk to bee population. Fipronil has long residual toxicity to bees.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Neonicotinoids (Amparo, Cruiser, Gaucho, Actara*, Confidor*, Intruder*, Shield*)</td>
<td>GROUP 4A</td>
<td>Note 10: Maximum 4 applications of Group 28 insecticides (Altacor, Exirel, Voliam Flexi). No use of Altacor in Chickpeas after 15th September.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Chlorantraniliprole+Thiamethoxam (Voliam Flexi*)</td>
<td>Group 4A + Group 28</td>
<td>Stop overwintering of resistant populations by practising good farm hygiene and controlling winter hosts. Pupae bust after harvest.</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Synthetic Pyrethroids</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STOP OVERWINTERING OF RESISTANT POPULATIONS BY PRACTISING GOOD FARM HYGIENE AND CONTROLLING WINTER HOSTS. PUPAE BUST AFTER HARVEST.

Which Product for Which Pest?

Refer to Tables 2–18, pages 7–48

Comments and Notes Describe All Use Restrictions

Note 1: If a phorate side dressing is used instead of a neonicotinoid seed dressing then do not use pirimicarb or dimethoate/omethoate as first foliar spray as there is cross resistance between them all. Dimethoate/omethoate use will select catastrophic pirimicarb resistance in aphids so do not use pirimicarb and dimethoate/omethoate in the same field.

Note 2: Failures of neonicotinoids against aphids have been confirmed. DO NOT follow a neonicotinoid seed treatment with a foliar neonicotinoid when aphids are present. If there is an alternative do not follow a neonicotinoid with sulfoxaflor.

Note 3: Cross check with the Silverleaf Whitefly Threshold Matrix, page 29.

Note 4: Maximum 2 consecutive sprays, alone or in mixtures.

Note 5: Additional applications can be made if targeting *Helicoverpa* moths using Magnet.

Note 6: Sprayed conventional cotton crops defoliated after March 9 are more likely to harbour resistant diapausing *Helicoverpa armigera* and should be pupae busted as soon as possible after harvest and no later than the end of August.

Note 7: Observe Withholding Periods, page 152. Products in this group have WHP 28 days or longer.

Note 8: High resistance is present in *Helicoverpa armigera* populations. Expect field failures.

Note 9: Refer to label for warnings of insecticide risk to bee population. Fipronil has long residual toxicity to bees.

Note 10: Maximum 4 applications of Group 28 insecticides (Altacor, Exirel, Voliam Flexi). No use of Altacor in Chickpeas after 15th September.
In every population of every pest species there is a small proportion of individuals with resistance to an insecticide. The use of insecticides selects against survival of non-resistant individuals, leaving these resistant individuals. Over-reliance on an insecticide can lead to an increase in the proportion of resistant individuals to the point that the insecticide fails to provide satisfactory control. This simple scenario is more complex in a field situation as products applied against a target pest not only select for resistance in that pest but in other pests also present at the same time. The IRMS aims to assist users to:

- Lower the risk of inadvertent selection of resistance in pests that are not the primary target of the insecticide application.
- Delay the evolution of pest resistance to key chemical groups, by minimising the survival of individuals with resistance.
- Manage entrenched resistance problems, such as the now widespread resistance in cotton aphids to neonicotinoids.

The IRMS includes all actives commercially available for use in cotton at the time of publication. The IRMS should be consulted for EVERY insecticide/miticide decision.

Principles underlying the IRMS

1. Monitor pest and beneficial populations.
2. Monitor fruit retention.
3. Use recommended thresholds for all pests.
4. For all pest species, aim to use the most selective insecticide options first, delaying the use of broad spectrum insecticides for as long as possible.
5. Comply with all directions for use on product labels.
6. Avoid repeated applications of products from the same insecticide group, even when targeting different pests. Rotate between groups.
7. Do not respray an apparent failure with the same product or another product from the same insecticide group. Rotate to a different group.
8. Control weeds and cotton volunteers in fields and around the farm all year to minimise pest hosts.
9. Pupae bust cotton as soon as possible after harvest.

In-season Troubleshooting

Ratification of the IRMS prior to the start of each season is the responsibility of Cotton Australia’s TIMS Committee. A Troubleshooting sub-committee is empowered to act on TIMS’ behalf during the cotton season to respond to emergency requests to vary the IRMS. The Troubleshooting sub-committee has a clear process for handling requests (detailed on p63). For further information contact Cotton Australia (02 9669 5222).

How to use the 2014/15 IRMS

REGION. There are now two IRMS regions. Central and Southern Regions have been combined. The Northern Region covers Central Queensland and stage dates account for the early planting and quicker crop development.

STAGE. The dates shown on the strategy charts are for the start of each stage (eg. 15 December 2013 start of Stage 2 for Central & Southern region IRMS). For those individual insecticides and miticides that start or end outside window boundaries, the start and/or end dates are listed.

SELECTIVITY. The products listed in the IRMS are listed in order of decreasing selectivity. For all pest species, aim to use the most selective option in the window first, delaying the use of broad spectrum insecticides for as long as possible.

USE RESTRICTIONS. Colours in the table now represent the maximum number of applications per crop per season for any given product.

Additional restrictions to product use can be found on the right hand column of the table, with links to specific footnotes. Avoid repeated applications of products from the same insecticide group, even when targeting different pests. Rotate between groups.

Key Changes for the 2014/15 cotton season

1. Number of Synthetic Pyrethroids per season
The maximum recommended number of application has been reduced from 4 to 1. This reflects recent increases in H.armigera resistance. It is also in line with the overall IPM message that the industry has been communicating on selecting chemistry soft on beneficials and limiting broad spectrum use.

2. Inclusion of bee warnings
Some insecticides pose a significant risk to bees. A note has been added to highlight where labels carry a warning about safety to bees.

3. Window restriction on Chlorantraniliprole (Altacor)
Altacor is now registered for use in pulses. To ensure a break in selection between use on pulses (mainly chickpea) and cotton, the window of use in chickpea closes on 15 Oct (central & southern regions) or 15 Sept (northern regions) and window does not open in cotton until Dec 15 (central & southern regions) or Nov 15 (northern regions).
4. Inclusion of sulfoxaflor (Transform) insecticide
Sulfoxaflor is a new insecticide with a novel mode of action (4C). Do not use more than 2 applications. Do not apply consecutive applications. It is unknown if cross-resistance with neonicotinoids (4A) is a risk. As a precaution Note 2 has been modified to include ‘If there is an alternative do not follow a neonicotinoid with sulfoxaflor.’

5. Inclusion of Cyantraniliprole (Exirel) in IRMS
Cyantraniliprole is a new active in the chemical Group 28. Do not use more than 2 applications. Refer to Note 10

Insecticide Groups:

<table>
<thead>
<tr>
<th>Active ingredient (proprietary trade names)</th>
<th>Insecticide Group</th>
<th>Chemical Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicoverpa viruses (Gemstar, Vivus)</td>
<td>Not a member of a group</td>
<td>Nuclear polyhedrosis virus</td>
</tr>
<tr>
<td>Paraffinic Oil (Canopy, Biopest)</td>
<td>Not a member of a group</td>
<td>Petroleum spray oil</td>
</tr>
<tr>
<td>Dicofol</td>
<td>Not a member of a group</td>
<td>UN - Unknown mode of action</td>
</tr>
<tr>
<td>Amorphous silica (Abrade)</td>
<td>Not a member of a group</td>
<td>Not a member of a group</td>
</tr>
<tr>
<td>Methomyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pirimicarb</td>
<td>GROUP 1A INSECTICIDE</td>
<td>Carbamate</td>
</tr>
<tr>
<td>Thiodicarb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>GROUP 1B INSECTICIDE</td>
<td>Organophosphates</td>
</tr>
<tr>
<td>Dimethoate / Omethoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methidathion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fipronil</td>
<td>GROUP 2B INSECTICIDE</td>
<td>Phenylpyrazoles (Fiproles)</td>
</tr>
<tr>
<td>Alpha-cypermethrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-cyfluthrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifenthrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>GROUP 3A INSECTICIDE</td>
<td>Synthetic Pyrethroids</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma-cyhalothrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambda-cyhalothrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeta-cypermethrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetamiprid (Intruder)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin (Shield)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid (multiple, includes seed treatments)</td>
<td>GROUP 4A INSECTICIDE</td>
<td>Neonicotinoids</td>
</tr>
<tr>
<td>Thiamethoxam (multiple, includes seed treatments Voliam Flexi#)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfoxaflor (Transform)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abamectin</td>
<td>GROUP 6 INSECTICIDE</td>
<td>Avermectins</td>
</tr>
<tr>
<td>Emaamectin (Affirm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyriproxyfen (Admiral, Avante, Muligan)</td>
<td>GROUP 7C INSECTICIDE</td>
<td>Pyriproxyfen</td>
</tr>
<tr>
<td>Pymetrozine (Fulfill)</td>
<td>GROUP 9B INSECTICIDE</td>
<td>Pymetrozine</td>
</tr>
<tr>
<td>Etoxazole</td>
<td>GROUP 10B INSECTICIDE</td>
<td>Etoxazole</td>
</tr>
<tr>
<td>Foliar Bacillus thuringiensis (Dipel)</td>
<td>GROUP 11 INSECTICIDE</td>
<td>Bt microbials</td>
</tr>
<tr>
<td>Diafenthiuron</td>
<td>GROUP 12A INSECTICIDE</td>
<td>Diafenthiuron</td>
</tr>
<tr>
<td>Propargite</td>
<td>GROUP 12C INSECTICIDE</td>
<td>Propargite</td>
</tr>
<tr>
<td>Amitraz</td>
<td>GROUP 19 INSECTICIDE</td>
<td>Amitraz</td>
</tr>
<tr>
<td>Indoxacarb</td>
<td>GROUP 22A INSECTICIDE</td>
<td>Indoxacarb</td>
</tr>
<tr>
<td>Spirotetramat</td>
<td>GROUP 23 INSECTICIDE</td>
<td>Spirotetramat</td>
</tr>
<tr>
<td>Chlorantraniliprole (Altacor) (Voliam Flexi#)</td>
<td>GROUP 28 INSECTICIDE</td>
<td>Diamides</td>
</tr>
<tr>
<td>Cyantraniliprole (Exirel)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#Voliam Flexi has actives from both a Group 28 and Group 4A.

DISCLAIMER

This document has been prepared by the authors for CRDC in good faith on the basis of available information.

While the information contained in the document has been formulated with all due care, the users of the document must obtain their own advice and conduct their own investigations and assessments of any proposals they are considering, in the light of their own individual circumstances.

The document is made available on the understanding that the CRDC, the authors and the publisher, their respective servants and agents accept no representation, statement or information whether expressed or implied in the document, and disclaim all liability for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information claimed in the document or by reason of any error, omission, defect or mis-statement (whether such error, omission or mis-statement is caused by or arises from negligence, lack of care or otherwise).

Whilst the information is considered true and correct as at 31 August 2014, changes in circumstances after the time of publication may impact on the accuracy of the information. The information may change without notice and the CRDC, the authors and the publisher and their respective servants and agents are not in any way liable for the accuracy of any information contained in this document.

Recognising that some of the information is provided by third parties, the CRDC, the authors and the publisher take no responsibility for the accuracy, currency, reliability and correctness of any information included in the document provided by third parties.

The product trade names in this publication are supplied on the understanding that no preference between equivalent products is intended and that the inclusion of a product does not imply endorsement by CRDC over any other equivalent product from another manufacturer.

ISSN 1442-8462
Production by Greenmount Press, 2014

Liberty® and Liberty Link® are Registered Trademarks of Bayer.
Bollgard II®, Roundup Ready Flex® and PLANTSHIELD® are registered trademarks of Monsanto Technology LLC used under licence by Monsanto Australia Ltd.