Fusarium Wilt of Cotton in Australia

J. K. Kochman1, 2, N. R. Obst1, 3, N. Y. Moore2, 3, W. T. O’Neill2, 3, and S. Bentley1
1Farming Systems Institute, DPI, 203 Tor St, TOOWOOMBA QLD 4350.
2Farming Systems Institute, DPI, 80 Meiers Rd, INDOOROPILLY QLD 4068.
3Cooperative Research Centre for Tropical Plant Pathology, Level 5, Hines Building, UNIVERSITY OF QUEENSLAND 4072.
4Cooperative Research Centre for Sustainable Cotton Production.

Introduction

Fusarium wilt of cotton (Gossypium L. spp.) is caused by the fungus Fusarium oxysporum Schletend. f.sp. vasinfectum (Atk.) Snyder and Hansen (Fov). The disease has been recorded in most of the world’s major cotton growing areas and causes significant losses in the USA, Tanzania, Egypt, and India (Smith et al., 1981) and China (Chen et al., 1985). Australia was considered to be free from the wilt pathogen until 1993, when it was confirmed in Queensland (Kochman, 1995). Fov was also recently discovered in the Philippines.

Wilted cotton plants have been collected from field sites throughout the Queensland and New South Wales growing areas since 1993. Several hundred isolates of Fov have been recovered from such material and examined in laboratory and glasshouse studies to determine the range of genetic and pathogenic diversity in the Australian fungal population. Where possible, Australian isolates have also been compared with isolates of Fov imported under quarantine from other countries.

Materials and Methods

Vegetative compatibility group (VCG) analysis is used to assess isolates of Fov recovered from wilted cotton plants in Australia using the technique described by Correll et al. (1987). DNA profiles have also been generated for Australian isolates of Fov using the technique known as DNA Amplification Fingerprinting (DAF) (Bentley and Bassam, 1996).

Differential cotton cultivars have been used in inoculation studies to examine the extent of pathogenic diversity in Australian populations of Fov. In glasshouse inoculation studies and resistance evaluations, cotton-seed is germinated in moist vermiculite. Two-week old seedlings are then removed, washed and the roots dipped for 5 minutes in an inoculum containing 10^6 conidia mL^-1. The inoculated seedlings are then transplanted to individual pots and grown in the glasshouse for 6 weeks. The plants are then removed and assessed externally for the presence of wilt symptoms and internally for the extent of vascular discoloration using a 5-point scale.

A fusarium wilt infested field site has been established near Cecil Plains on the Darling Downs in Queensland to evaluate cotton germplasm for resistance to Fov.

Results and Discussion

Initially the disease was identified only on the Darling Downs. In 1995, wilted plants were observed near Goondiwindi in southern Queensland and then, in 1997, from near Moree in northern New South Wales. During subsequent seasons, the incidence of fusarium wilt became much greater and more widespread in these districts. Some cases appeared to be related to overland water flows. At the end of the 1997/98, the first case of Fov was confirmed at one
location near Theodore in Central Queensland, several hundred kilometres from previously affected areas. The cotton growing regions near St George and Emerald in Queensland and all regions south of Moree in New South Wales remain free from Fov.

VCG and DNA testing have revealed that two distinct strains of Fov (VCGs 01111 and 01112) are present in Australia. DNA analysis confirms that isolates within each of these VCGs are very closely related but that isolates within VCG 01111 give a significantly different DNA banding pattern to that of isolates in VCG 01112. Both groups appear to be equally pathogenic to current commercial cotton varieties. VCG 01111 occurs throughout the Darling Downs and near Theodore in Queensland and Moree in New South Wales. VCG 01112 appears to have a more limited distribution having only been recorded on a small number of properties in the Goondiwindi district in Queensland and at Moree in New South Wales.

Based on comparative analyses with a limited number of isolates of Fov from other countries, it appears that the Australian strains of Fov are distinctly different from overseas strains of the pathogen. This raises the possibility that the Australian strains of Fov may have evolved locally, perhaps in response to the widespread planting of susceptible varieties.

Resistance among local cotton varieties to the Australian strains of Fov ranges from highly susceptible to moderately resistant. Glasshouse and field evaluations of germplasm are being carried out in association with the major cotton breeding programs in Australia. Selections from F1 populations, which appear to be segregating for resistance to Fov, are also being evaluated.

In addition to breeding and evaluating germplasm for resistance to Fov, other disease management options are being adopted to contain outbreaks of the disease and prevent spread of the pathogen to disease-free farms and districts. Future research aims to identify a range of disease management strategies for industry including cultural practices such as stubble management and pathogen-limiting crop rotations.

References