Energy inputs represent a major cost and one of the fastest growing cost inputs to primary producers. The Australian cotton growing industry is highly mechanised and heavily reliant on fossil fuels (electricity and diesel). Within highly mechanised farming systems such as those used within the cotton industry, machinery inputs are significant and can represent 40–50% of the cotton farm input costs. Direct energy use is a major component of these costs. Given the major dependence on direct energy inputs and rising energy costs, energy use efficiency is an emerging issue for the Australian cotton industry.

Previous work undertaken by the National Centre for Engineering in Agriculture (NCEA) has studied direct on farm energy use involving a number of case study cotton farms to understand the range, costs and contributions of energy use to cotton production and greenhouse gas emissions. The results from this work showed that energy use varies depending on the cropping enterprise and the farming system and that there are significant opportunities to reduce energy and costs. In comparison the GHGs from direct energy use can be similar and in fact greater than the GHGs generated by soil/fertiliser/water interactions. Improving on farm energy use would appear to be as important as improving nitrogen efficiency.

In the cropping sector a number of practice changes and technology developments have been, or are being, adopted which can be expected to reduce fuel/energy use or energy use intensity. Examples include minimum/zero tillage, controlled traffic, a range of precision ag technologies, planting of GM crops, some water use efficiency measures and use of legumes in crop rotations.

Within highly mechanised agricultural production systems such as the Australian cotton industry direct energy inputs (i.e. diesel and electricity) represent a major cost to the grower and potentially a significant proportion of the total GHG emissions. Previous studies by Baillie and Chen (2008) have reported significant savings in energy for both a refinement in current practices (i.e. up to 30% for individual operations) and a change in practice (10–20% across the farming system) through energy assessment.

Rational and efficient use of energy is essential for sustainable development in agriculture. At the current market condition, 1 Gigajoule (GJ) of energy would typically cost Australian farmers $20 to $25. Previous work (Chen and Baillie, 2007) including irrigated cotton production has shown that total energy inputs are influenced by management and farming methods, and ranged from 3.7 to 15.2 GJ/ha; at a cost of $80 to $310/ha and 275 to 1404 kg CO2 equivalent/ha greenhouse gas emissions. Dry land cotton production in comparison is expected to be at the lower end of this range.

Monitoring to manage – assessing on farm energy use

An energy assessment determines how efficiently energy is being used, identifies energy and cost saving opportunities and highlights potential improvements in productivity and quality. This may also include potential energy savings through fuel switching, tariff negotiation and managing energy demands. Practically the main purpose of conducting energy assessments and maintaining records is to identify opportunities for significant cost savings which will lead to reduced GHGs. The concept of energy assessments in the cotton industry is relatively new with ongoing work being continued within the industry and linkages to myBMP. Starting to monitor energy use can be as simple as collating fuel and electricity costs and tracking them over time. As growers start to look at energy they will find that the more information collected will help to identify opportunities to produce more crop per Gigajoule.

Preliminary assessment

(Overview of the total energy consumption on-site, whole farm approach)

- This is the simplest & cheapest form of assessment. No additional tools are required.
- Collate total fuel (diesel, petrol & other fuels), and total electricity energy consumed, from farm receipts. Divide total energy use by total farm production (e.g., bales of cotton; head of cows) or area.
- The main purpose of a preliminary assessment is to benchmark overall energy consumption over time and to allow for comparing the relative performance of similar enterprises.
The trouble with buying old technology today, is finding someone to sell it to tomorrow.

The all-new forward thinking range has landed.

At New Holland, we have a clear view of the future. And it’s all thanks to combining EcoBlue™ SCR technology with many intelligent features, like the award winning ergonomic Sidewinder II™, which is used to drive all our high-horsepower equipment.

These unique combinations of smart operational enhancements – such as Engine Power Management, Transmission with Ground Speed Management, “Active” Suspension systems and TerraLock™ Automated Traction Control – all provide greater value, lowering your overall cost of ownership whilst delivering much more responsive power. And that all adds up to enhanced overall productivity and operating efficiency.

It’s so forward thinking, everything else seems backward. To find how New Holland high-horsepower tractors can keep you ahead of the game now and in the future, visit brightfuture.com.au/scr or contact your local New Holland dealer.
Standard assessment

(Itemised farm approach, practice based)
- This is a practice based assessment which includes a desktop study of the energy breakdown or itemised account of energy usage across the farm.
- Energy usage for key farming processes is determined from data easily available from the site (i.e. record of practices, some fuel use data), calculated from machine specifications or based on published data for specific farming practices. Site specific information including electric motor sizes, pumping equipment, tractors and vehicles is collated to calculate energy use.
- This assessment provides much more detail than a preliminary assessment and aims to reach an accuracy of ±20%.
- In addition to whole of farm benchmarking, helps to identify target areas and operations requiring further investigation.
- EnergyCalc Lite has been developed by the National Centre for Engineering in Agriculture to undertake agricultural energy assessments. EnergyCalc Lite also converts direct energy inputs into greenhouse gas emissions. Both the methodology and software requires some instruction however a record of farming practices and equipment or detailed bowser and electricity meter-box type measurements for all farming operations form the basis of an energy assessment. For more information go to www.mybmp.com.au

Advanced assessment

(Itemised farm approach, measurement based)
- This is a comprehensive measurement based assessment of energy usage across the farm.
- An advanced assessment utilises site specific data either gained from on-site measurement or through data and records maintained over time. An advanced assessment may include simple record keeping or more sophisticated equipment to extract energy usage for specific items of plant. Measurements would normally include bowser and electricity meter-box type measurements for all farming operations and processes.
- This assessment provides much more detail and accuracy (aims to reach an accuracy of ±10%).
- In addition to whole of farm benchmarking, this information helps to identify target areas and operations requiring further investigation. EnergyCalc Lite can also help with this type of assessment. For more information go to www.mybmp.com.au

Detailed assessment of high energy use farming practices

(Specific operation investigation)
- The aim of a detailed assessment is to investigate ways to improve the efficiency of a specific operation and most likely requires specialised advice. Ideally this would focus on where the greatest energy consumption has been identified from standard or advanced assessments.
- This will usually involve a range of different sensors to measure the performance (energy efficiency) of different machinery. Examples of sensors used may include pressure (irrigation head pressure), flow rate, engine RPM, tractor travel speed, torque, load and temperature etc. A data logger may be required to record data for a considerable period of time to determine performance and to identify optimised machine settings (i.e. pumping).

Assessing greenhouse gas emissions (GHGs) from direct energy inputs

With the increased community concern on global warming and climate change, the greenhouse gas emissions from the fuel use of agricultural production can be easily determined. This is particularly important in highly mechanised production systems as direct energy use contributes a significant proportion of the total GHGs and may be similar to biologically generated emissions (i.e. soil/water/fertiliser interactions). This may have strategic use to the cotton industry in the future through product labelling or where a price on carbon is established. Conversion of direct energy use (i.e. fuel, electricity etc) to greenhouse gas emissions can be determined by calculations and factors outlined in the National Greenhouse Accounts Factors published by the Department of Climate Change & Energy Efficiency.

On farm energy use and GHGs

Previous work has shown that on farm energy use varies significantly between different farming enterprises. Chen and Baillie (2007) reported on farm energy use to range from 3.7 to 15.2 GJ/ha costing $80 to $310/ha. All farms included in the study covered a range of farming regions and farming practices (e.g., conventional tillage, minimum tillage, dryland farming, and irrigation) in both NSW and...
Queensland. Diesel energy inputs ranged from 95 to 365 litres/ha, with most farms using 120 to 180 litres/ha.

GHGs associated with this direct energy use was estimated to be between 275 and 1404 kgCO₂-e/ha. Dry land cotton production is expected to be at the lower end of this range. It is important to note that these calculations only relate to GHGs from direct energy use, and has not included the (biological) effect due to soil tillage/disturbance and applications of nitrogen fertiliser which can be determined by the Cotton Greenhouse Gas Calculator.

For irrigated cotton, average energy related greenhouse gas emissions can be equivalent to emissions from fertiliser use. A focus on improving on-farm energy use efficiency can be as important in irrigated cropping systems as improving nitrogen use efficiency. For example, data contained in the Australian Governments submission to the UN Framework Convention on Climate Change May 2010 (Australian Government, 2010) suggests that, in irrigated cotton, average energy related costs and greenhouse gas emissions (0.712 t CO₂-e/ha) appear to be equal to average costs and emissions from fertiliser use (0.67 t CO₂-e/ha).

Energy saving practices

Generally lower energy use on farm is a function of the number and intensity of farming operations and the requirements for pumping irrigation water. In cotton systems, water pumping is often the major energy use operation (20–70%). Significant efficiency gains (and in some cases crop productivity gains) can be made by optimising pump performance to provide reductions in diesel costs and in some cases improved pump efficiency can lead to increased water flow, more timely irrigation and improved crop yield.

It has been shown that if a farmer moves from conventional tillage to minimum tillage, there is a potential saving of around 10% of the fuel used on the farm, plus other production advantages.

It has also been found that energy use associated with picking is also significant and may contribute 20–50% of the total direct energy use (more so in dry land cropping systems). Ensuring equipment is well maintained and operated efficiently is particularly important for these high energy use operations.

In 2009 the NCEA conducted a case study (Baillie, 2009) to benchmark the energy use reductions resulting in the adoption of reduced tillage systems on the cotton farm ‘Keytah’ in the Gwydir Valley. The study showed that adoption of a minimum tillage system had reduced energy costs (and greenhouse emissions) by 12% since 2000 and developing a ‘near zero till’ system had the potential to reduce this to 24% less than 2000 energy costs. The integration of diesel–gas systems to reduce reliance on diesel fuel on this farm also shows considerable promise.

Compared with cotton, the energy use of other rotational (grain) crops is usually lower. Cotton generally has a greater number of farming operations, more intensive energy use associated with harvest (i.e. picking) and higher irrigation demands.

For further information and support relating to assessing your energy and greenhouse gas emissions, refer to the energy and greenhouse gas module in myBMP (www.mybmp.com.au).

For further information and support relating to assessing your energy and greenhouse gas emissions, refer to the energy and greenhouse gas module in myBMP (www.mybmp.com.au).

References:

Available from Apple App Store