Mites

Spider mites

Two-spotted spider mite – *Tetranychus urticae*

Bean spider mite – *T. ludeni*

Strawberry spider mite – *T. lambi*

The two-spotted spider mite is the main pest species, the other two species rarely colonise cotton and seldom cause economic damage. Even in high numbers, *T. lambi* infestations still result in very low levels of damage. Historically, two-spotted spider mite was the dominant mite species, but in recent years it is less common and bean spider mite and strawberry spider mite are more common. These species differ in damage potential so correct identification of the species present is crucial for good decisions.

Damage symptoms

All three species feed on the underside of leaves but the damage symptoms are quite different.

Two-spotted mite – nymphs and adults cause damage that appears as brownish areas on the lower leaf surface, usually starting at the junction of the petiole and leaf blade or in leaf folds. These areas show reddening on the upper surface. If damage is allowed to continue leaves will become completely red and will fall off.

Bean spider mite (this species is red in colour) – damage results in white, intensively stippled areas on the leaf underside, but there is generally no reddening of the upper surface. Severe damage may result in some leaf shedding.

Strawberry spider mite – this species can be very abundant but rarely, if ever, affects yield. Damage is a light, sparse stippling or white dots on the underside of the leaf. There is generally no reddening of the upper leaf surface.

Sampling

‘Sampling protocols for mites in cotton’ are presented in full on page 23.

Look for the presence of any mite stages. Eggs and immature stages are difficult to see with the naked eye, so a hand lens should be used. Mites infest the underside of leaves. Sample the oldest leaf when plants are very young. As plants grow, choose leaves that are from 3, 4 or 5 nodes below the plant terminal. Check which species is present. Two-spotted spider mite is pale green and has 2 distinct dark green spots on either side. Adults of bean spider mite are a dark red colour. Strawberry spider mite is smaller than the other two spider mites. Their bodies are pale green with 3 dark green spots on either side. They cause very little damage.

Frequency

Sample at least weekly. Begin at seedling emergence. Sample more frequently if mite populations begin to increase, or if conditions are hot and dry, or if sprays which eliminate predators are used.

Methods

Presence/absence sampling allows many plants to be sampled quickly, thus increasing the likelihood of finding mites if they are present. It is helpful to plot the development of mite populations on a graph. This allows changes in mite population to be seen at a glance. The detailed sampling protocol for monitoring mite populations is on page 23.

Thresholds

Thresholds and yield loss charts and tools have been developed for two-spotted mites. These probably over-estimate yield loss for bean spider mite. No threshold is required for strawberry mite as it does not appear to reduce yield.

A general threshold of 30% of plants infested is advocated through the bulk of the season (squaring to first open boll). Yield loss due to mites depends on when mite populations begin to increase and how quickly they increase.

Seedling emergence to squaring

Mites are normally suppressed by predators, especially by thrips during this period. Mite populations only need to be controlled if they begin to increase, which indicates that natural controls are not keeping them in check. Use Table 7 on page 24 to determine whether the rate of increase warrants control.

Squaring to first open boll

Control if mite populations increase at greater than 1% of plants infested per day in two consecutive checks, or if more than 30% of plants are infested. Use Table 7 on page 24 for details.

First open bolls to 20% open bolls

Control is only warranted if mites are well established (greater than 60% plants infested) and are increasing rapidly (faster than 3% of plants infested per day). Use Table 7 on page 24 for details.

Crop exceeds 20% open bolls

Control is no longer warranted.

Mite Yield Loss estimator on the web

A simple relationship has been developed which allows prediction of yield loss from mites based on knowledge of the rate of increase in the population and the time remaining until defoliation. Record keeping and calculating can be simplified by
Mites

Using the Mite Yield Loss Estimator in CottASSIST on the web. Examples of charts generated by this tool are presented on page 25.

Mite population %. This is the percentage of leaves infested with mites.

Average rate of change. This is an average of the rates of change recorded for successive mite samples. Compared with the rate of change that you would expect if the yield loss from the mite population was 4%. This value (4%) is roughly when yield loss from mites would justify control, based on loss of revenue and cost of control. This may need to be adjusted for your particular situation.

Yield loss %. The yield loss calculation is based on the current percentage of plants infested with mites, the rate of change of the mite population and the number of days remaining in the season depending on the region. In general, zero or negative change in mite populations indicates that something has adversely affected population development such as mite spray, beneficials eating mites, heavy rainfall or a combination of these factors.

Mite yield reduction charts

As an alternative to the web tool, ‘look-up’ charts have been provided in Table 7, page 24 for areas with different season lengths:

Warmer – Bourke, Central Queensland, Macintyre Valley, St George and Walgett

Average – Dalby, Gwydir Valley, Lockyer Valley and Lower Namoi Valley

Cooler – Boggabri, Breeze, Cecil Plains – Pittsworth and Macquarie Valley

The charts use the rate of increase of the mite population. This is calculated by dividing the change in the percentage of plants infested between consecutive checks by the number of days between the checks. For example, if a field had 10% of plants infested a week ago and 24% infested now, this gives a rate of increase of 2% of plants infested per day.

To use the charts

1. Select the chart appropriate for your region.
2. Go to the section that is closest to the current infestation level of the field i.e. 10%, 30% or 60%.
3. Go to the column with the rate of increase closest to that of the mite population in the field.
4. Look down this column to the value that corresponds with the current age of the crop.

This value is the predicted yield loss that the mite population is likely to cause if left uncontrolled. It must be stressed that these charts only provide a guide for potential yield losses caused by mites.

You will need to take into account the vigour of the crop, other pests (you may be about to spray with a pyrethroid which may flare mites) and the conditions (that is, mites are generally favoured by hot dry conditions). Differences between the more mite resistant ‘okra’ leaf varieties and the normal leaf varieties are built into the charts. The effect of beneficials is also built into these charts only provide a guide for potential yield losses caused by mites.

Key beneficial insects

Predators – thrips, minute two-spotted ladybird, mite-eating ladybird, damsel bug, big-eyed bug, brown lacewing adults, brown smudge bug, apple dimpling bug, tangleweb spiders.

Selecting a miticide

The miticide products registered for the control of spider mites in cotton in Australia are presented in Table 8 on page 25. Amitraz, used for the control of *Helicoverpa spp.* early in the season, will tend to slow, or suppress, the development of mite populations that may also be in the field. Conversely, mite infestations may increase after the application of some broad-spectrum insecticides used for *Helicoverpa* or mirid control, such as synthetic pyrethroids, and organophosphates. This occurs because those sprays kill key beneficial species allowing mite populations to flourish.

Resistance profile – Two-spotted spider mite

<table>
<thead>
<tr>
<th>WIDESPREAD, HIGH LEVELS OF RESISTANCE</th>
<th>WIDESPREAD, LOW/MOD LEVELS OF RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>bifenthrin (SP)</td>
<td>propargite</td>
</tr>
<tr>
<td>OCCASIONAL DETECTION OF HIGH LEVELS OF RESISTANCE</td>
<td>OCCASIONAL DETECTION OF LOW LEVELS OF RESISTANCE</td>
</tr>
</tbody>
</table>

The two spotted mite causes economic damage and has a recent history of developing resistance to miticides. While current resistance levels are low for all products excluding OPs and pyrethroids, resistance can be selected very quickly. Avoid consecutive sprays of the same miticide. If mite numbers rebuild after a miticide application, rotate to a product from a different chemical group. Once cotton is ~8 nodes, thrips cease to be a pest and become voracious predators of mites. Where thrips are preserved, they can provide sustained suppression of mite populations at below damaging levels.

Abamectin resistance has occasionally been detected at high levels in two-spotted spider mite in horticulture, but not in cotton. The bifenthrin and chlorfenapyr resistance that has developed in mites in recent years has occurred largely due to the use of these compounds against other pests. When choosing a miticide, consider previous insecticide choices and avoid consecutive sprays from the same group.

There has been no research yet to establish if bean spider mite causes yield loss. However, if populations build to the point that leaves begin to drop then yield loss is possible and populations should be controlled with a product registered for that use to prevent this occurring.

Overwintering habit

Mites mostly survive the winter in cotton growing areas as active colonies on a wide range of broad-leaf weeds. While the lifecycle slows in cool temperatures, mites are adapted to exploit ephemeral hosts and to produce large numbers of offspring, especially as conditions warm up in spring.

Alternative hosts

Preferred winter weed hosts are turnip weed, marshmallow, deadnettle, medics, wireweed and sowthistle, although they can be found on almost any broad-leafed weed species. Alternative winter and spring host crops include safflower, faba beans and field peas.

Further Information:

CSIRO Plant Industries, Narrabri
Lewis Wilson: (02) 6799 1550 or 0427 991 550

NSW DPI, Camden
Grant Herron: (02) 4640 6471
Population Monitoring

1. Walk into the field about 40 m. (Early in the season it is also advisable to sample near the field edges to see if significant influxes of mites have occurred).

2. Take a leaf from the first plant on the right or left. The leaf should be from the third, fourth or fifth main-stem node below the terminal. If the plant has less than three leaves, sample the oldest. Note that early in the season, up to the point that the plant has about five true leaves, it is simplest to pull out whole plants.

3. Walk five steps and take a leaf from the next plant, on the opposite side to the previous one, and so on until you have 50 leaves. (Wait until you have collected all the leaves before scoring them).

4. Once all the leaves have been collected score each leaf by turning it over, looking at the underside, firstly near the stalk, then scanning the rest of the leaf. If mites of any stage (eggs or motiles) are present score the leaf as infested. A hand lens will be needed to see mite eggs because they cannot be seen with the naked eye.

5. Repeat this simple procedure at several widely separated places in the field to allow for differences in mite abundance within the field. Depending on the size of the field, 4–6 sites are needed to obtain a good estimate of mite abundance.

6. When finished sampling, calculate the percentage of plants infested in the field.

Additional recommendations for monitoring mites in seedling cotton

On seedling cotton (up to 6–8 true leaves) sample regularly to determine the level of infestation using the standard presence/absence technique described above.

When more than 5% of plants are infested it is also advisable to count the numbers of mites on plants, and to score the mite damage level (ie. estimate the % of the plants total leaf area that is damaged by mites).

Continue to monitor mite numbers, damage levels and infestation levels at least weekly, or more frequently if infestation levels are high (> 30% of plants infested).

If the level of infestation, damage level or mite number per plant declines then control is unnecessary, but monitoring should continue.

If mite numbers per plant do not decline after about 6 weeks, if the damage levels exceed an average of 20% of plant leaf area, or if infestation levels increase, then predators are not abundant enough to control mites and a miticide should be applied.

After about 6–8 true leaves, specific mite counts and damage scoring can cease, but continue to use the presence/absence sampling method (points 1–6) until 20% open bolls.

Miticide Resistance Monitoring

1. If mites are being collected after a miticide application, ensure sufficient time has lapsed for the miticide to be fully activated. Depending on the product, this may take 7 to 10 days.

2. Collect 50 infested leaves per field. Only collect one sample per field. Keep samples from different fields separate. If mite numbers per leaf are very low, consider collecting up to 100 leaves.

3. Try to avoid collecting all the leaves from only 2 or 3 plants. Where possible collect infested leaves from different areas across the field.

4. Phone Grant Herron and let him know you are sending the sample. Avoid making collections and sending samples on Thursdays or Fridays.

5. Ensure samples are clearly labelled and that labels include the following information:

 - Farm Name ..
 - Field ..
 - Region (eg. Gwydir) ...
 - Collector’s Name ...
 - Phone No ...
 - Fax No ..
 - Email address..
 - Date of collection / /
 - Comments eg. details of the problem if a control failure has occurred.

Sending collections to EMAI

Pack the leaves loosely in a paper bag, fold and staple the top. Pack this in a 6-pack esky. Attach the sample details and send by overnight courier to:

Dr Grant Herron

NSW DPI,

Elizabeth McArthur Agricultural Institute,

Woodbridge Road,

Menangle NSW 2568. Phone: (02) 4640 6471

Sampling Tips

to save time in the field...

Aphids, mites and whitefly can all be sampled using the same leaves from the 3rd or 4th node below the terminal.

Assess for whitefly while collecting the leaves as adults are mobile. Then assess the collected leaves for both mites and aphids.

Collect leaves from several locations in the field.

While the whitefly sampling protocol requires a minimum of 10 leaves per location, aphid and mite sampling requires at least 20 leaves per location. Using 20 leaves will increase the accuracy of whitefly assessment.
TABLE 7: Yield reduction caused by mites

The charts below can be used to estimate the percentage of yield reduction caused by mites, for different cotton growing regions.

<table>
<thead>
<tr>
<th>Days from planting</th>
<th>Current % plants infested with mites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Observed rate of increase (%/day)</td>
</tr>
<tr>
<td></td>
<td>0.5 1 1.5 2 3 5 7 0.5 1 1.5 2 3 5 7 0.5 1 1.5 2 3 5 7</td>
</tr>
<tr>
<td></td>
<td>10.1 4.0 8.6 14.9 32.8 89.3 100.0 1.8 5.2 17.2 10.3 36.1 94.7 100.0 3.1 7.3 13.2 20.8 41.2 100.0 100.0</td>
</tr>
<tr>
<td></td>
<td>20.1 3.5 7.4 12.9 28.2 76.7 100.0 1.6 4.6 9.0 14.9 31.2 81.6 100.0 2.6 5.8 10.3 16.0 31.2 76.7 100.0</td>
</tr>
<tr>
<td></td>
<td>30.0.9 3.0 6.3 10.9 23.9 65.0 100.0 1.5 4.0 7.8 12.9 26.7 69.6 100.0 2.6 5.8 10.3 16.0 31.2 76.7 100.0</td>
</tr>
<tr>
<td></td>
<td>40.0.7 2.5 5.3 9.2 20.0 54.3 100.0 1.3 3.5 6.7 10.9 22.6 58.4 100.0 2.4 5.2 9.0 13.9 26.7 65.0 100.0</td>
</tr>
<tr>
<td></td>
<td>50.0.6 2.1 4.4 7.6 16.5 44.5 86.2 1.1 3.0 5.6 9.2 18.8 48.3 91.5 2.2 4.6 7.8 11.9 22.6 54.3 99.6</td>
</tr>
<tr>
<td></td>
<td>60.0.5 1.7 3.6 6.1 13.3 35.7 69.1 1.0 2.5 5.6 9.7 15.4 39.1 73.8 2.0 4.0 6.7 10.0 18.8 44.5 81.1</td>
</tr>
<tr>
<td></td>
<td>70.0.4 1.4 2.8 4.8 10.4 27.9 53.9 0.9 2.1 3.8 6.1 12.3 30.9 58.0 1.8 3.5 5.6 8.4 15.4 37.5 64.5</td>
</tr>
<tr>
<td></td>
<td>80.0.3 1.1 2.2 3.7 7.9 21.0 40.5 0.7 1.7 3.1 4.8 9.5 23.7 44.1 1.6 3.0 4.7 8.6 12.3 27.9 49.9</td>
</tr>
<tr>
<td></td>
<td>90.0.3 0.8 1.6 2.7 5.7 15.1 29.1 0.6 1.4 2.4 3.7 7.1 17.4 32.2 1.5 2.5 3.8 5.5 9.5 21.0 37.1</td>
</tr>
<tr>
<td></td>
<td>100.0.2 0.6 1.1 1.9 3.9 10.2 19.5 0.5 1.1 2.8 2.7 5.1 12.1 22.1 1.3 2.1 3.1 4.2 7.1 15.1 26.2</td>
</tr>
<tr>
<td></td>
<td>110.0.1 0.4 0.7 1.2 2.4 6.3 11.9 0.4 0.8 1.3 1.9 3.4 7.7 13.9 1.1 1.7 2.4 3.2 5.1 10.2 17.2</td>
</tr>
<tr>
<td></td>
<td>120.0.1 0.2 0.4 0.6 1.3 3.3 6.1 0.3 0.6 0.8 1.2 2.0 4.3 7.6 1.0 1.4 1.8 2.3 3.4 6.3 10.0</td>
</tr>
<tr>
<td></td>
<td>130.0.1 0.1 0.2 0.3 1.2 2.3 3.0 0.4 0.5 0.6 1.0 1.9 3.2 0.9 1.1 1.3 1.5 2.0 3.3 4.8</td>
</tr>
<tr>
<td></td>
<td>140.0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.2 0.2 0.3 0.3 0.3 0.5 0.6 0.7 0.8 0.8 0.9 1.0 1.2 1.5</td>
</tr>
<tr>
<td></td>
<td>150.0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.5 0.2 0.3 0.3 0.3 0.4 0.7 1.0 0.8 0.9 1.0 1.2 1.5</td>
</tr>
<tr>
<td></td>
<td>160.0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.5 0.2 0.3 0.3 0.3 0.4 0.7 1.0 0.8 0.9 1.0 1.2 1.5</td>
</tr>
<tr>
<td></td>
<td>170.0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.7 1.2 0.2 0.3 0.4 0.5 0.7 1.2 1.9 0.8 0.9 1.1 1.2 2.3 3.3</td>
</tr>
</tbody>
</table>

Warmer regions: planting to 60% bolls open in 134–154 days.
- Dalby, Gwydir, Lockyer, Lower NamoI

Average regions: planting to 60% bolls open in 161–170 days.
- Boggabri, Breeze, Cecil Plains, Pittsworth, Trangie

Cooler regions: planting to 60% boll open in <170 days.

Key Insects and Mite Pests – sponsored by

Mites

Average regions: planting to 60% bolls open in 161–170 days.
- Boggabri, Breeze, Cecil Plains, Pittsworth, Trangie

Cotton Pest Management Guide 2013–14
TABLE 8: Control of mites

<table>
<thead>
<tr>
<th>Active ingredient</th>
<th>Concentration and formulation</th>
<th>Application rate of product</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Abamectin | 18 g/L EC | 0.3 L/ha | Best results will be obtained when applied to low mite populations. Do not use more than twice in one season. *
| Amitraz | 200 g/L EC | 2.0 L/ha | Suppression when used for controlling Helicoverpa |
| Bifenthrin | 100 g/L EC | 0.6–0.8 L/ha | Applications against Helicoverpa spp. will give good control of low mite populations. *
| Chlorpyrifos | 300 g/L EC | 1.0–1.5 L/ha | Mix with pyrethroids as a preventative spray to minimise buildup of mite populations. * |
| | | 2.5 L/ha | For established mite populations. * |
| Dicofol | 240 g/L EC | 4.0 L/ha | Applications against Helicoverpa will give good control of low mite populations. * |
| | 480 g/L EC | 2.0 L/ha | Applications against Helicoverpa will give good control of low mite populations. * |
| Methidathion | 400 g/L EC | 0.5 L/ha | Will not control organophosphate-resistant mites. Do not harvest for 14 days after application. Do not graze or cut for stockfood for 14 days after application. * |
| Emamectin benzoate| 17 g/L EC | 0.55–0.7 L/ha | When applied for Helicoverpa control will reduce the rate of mite population development. Suppression only. *
| Etoxazole | 110 g/L SC | 0.35 L/ha | Apply by ground rig only. Refer to label for no-spray zones and record keeping. Best on low to increasing populations. |
| Methidathion | 400 g/L EC | 1.4 L/ha | Knockdown and short residual control. * |
| Phorate | 100 g/kg G | 6.0 kg/ha | For short residual control at time of planting. |
| | | 11.0–17.0 kg/ha | For extended period of control. Only use the highest rate on heavy soils when conditions favour good emergence. |
| | 200 g/kg G | 3.0 kg/ha | For short residual control. |
| | | 5.5–8.5 kg/ha | NSW & WA registration only. |
| Propargite | 600 g/L EC | 2.5 L/ha | Apply as spray before mite infestations reach damaging levels as maximum efficacy is not reached until 2 weeks after spraying. * |

*See label for instructions to minimise impact on bees.