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Abstract 

The Australian cotton industry has developed high yielding and high quality fibre 

production systems and attributes a significant contribution of this achievement to highly 

innovative breeding programs, specifically focused on the production of premium quality 

lint for the export market. Breeding programs have recently shifted attention to the 

development of new germplasm with superior stress tolerance to minimise yield losses 

attributed to adverse environmental conditions and inputs such as irrigation, fertilisers and 

pesticides. Various contributors to yield, such as physiology, biochemistry and gene 

expression have been implemented as screening tools for tolerance to high temperatures 

under growth cabinet and laboratory conditions but there has been little extension of these 

mechanisms to field based systems.  

This study evaluates tools for the identification of specific genotypic thermotolerance 

under field conditions using a multi-level ‘top down’ approach from crop to gene level. 

Field experiments were conducted in seasons 1 (2006) and 3 (2007) at Narrabri (Australia) 

and season 2 (2006) in Texas (The United States of America) and were supplemented by 

growth cabinet experiments to quantify cultivar differences in yield, physiology, 

biochemical function and gene expression under high temperatures. Whole plants were 

subjected to high temperatures in the field through the construction of Solarweave® tents 

and in the growth cabinet at a temperature of 42 oC.  The effectiveness of these methods 

was then evaluated to establish a rapid and reliable screening tool for genotype specific 

thermotolerance that could potentially improve the efficiency of breeding programs and 

aid the development to high yielding cultivars for hot growing regions. 
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Cotton cultivars Sicot 53 and Sicala 45 were evaluated for thermotolerance using crop 

level measurements (yield and fibre quality) and whole plant measurements (fruit 

retention) to determine the efficacy of these measurements as screening tools for 

thermotolerance under field conditions. Sicot 53 was selected as a relatively 

thermotolerant cultivar whereas Sicala 45 was selected as a cultivar with a lower relative 

thermotolerance and this assumption was made on the basis of yield in hot and cool 

environments under the CSIRO Australian cotton breeding program. Yield and fruit 

retention were lower under tents compared with ambient conditions in all 3 seasons. Yield 

and fruit retention were highly correlated in season 1 and were higher for Sicot 53 

compared to Sicala 45 suggesting that fruit retention is a primary limitation to yield in a 

hot season. Thus yield and fruit retention are good indicators of thermotolerance in a hot 

season. Temperature treatment and cultivar differences were determined for fibre quality 

in seasons 1 and 3; however, quality exceeded the industry minimum thereby indicating 

that fibre quality is not a good determinant of thermotolerance.  

Physiological determinants of plant functionality such as photosynthesis, electron 

transport rate, stomatal conductance and transpiration rate were determined for cultivars 

Sicot 53 and Sicala 45 under the tents and an index of these parameters was also analysed 

to determine overall plant physiological capacity in the field. Physiological capacity was 

also determined under high temperatures in the growth cabinet using a light response 

curve at various levels of photosynthetically active radiation (PAR). Photosynthesis and 

electron transport rate decreased, whilst stomatal conductance and transpiration rate 

increased under the tents as well as under high temperatures in the growth cabinet. 

Photosynthesis and electron transport rate were higher for Sicot 53 but stomatal 

conductance and transpiration rate were higher for Sicala 45 under the tents. No cultivar 

differentiation was evident for plants grown under high temperatures in the growth 
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cabinet. Temperature treatment and cultivar differences in physiological function were 

greater in a hot year (season 1), thereby indicating the importance of cultivar selection for 

thermotolerance in the presence of stress. Electron transport rate was correlated with yield 

in season 1, thus suggesting the suitability of this method for broad genotypic screening 

for thermotolerance under field conditions.  

Biochemical processes such as membrane integrity and enzyme viability were used to 

determine cultivar specific thermotolerance under high temperature stress in the 

laboratory, field and growth cabinet. Electrolyte leakage is an indicator of decreased 

membrane integrity and may be estimated by the relative electrical conductivity or relative 

cellular injury assays. The heat sensitivity of dehydrogenase activity, a proxy for 

cytochrome functionality and capacity for mitochondrial electron transport, may be 

quantified spectrophotometrically. Cellular membrane integrity and enzyme viability 

decreased sigmoidally with exposure to increasing temperatures in a water bath. 

Membrane integrity was higher for Sicot 53 compared with Sicala 45 under the tents and 

under high temperatures in the growth cabinet. No temperature treatment or cultivar 

differences were found for enzyme viability under the tents; however, enzyme viability for 

Sicala 45 was higher in the growth cabinet compared with Sicot 53. Relative electrical 

conductivity was strongly correlated with yield under ambient field conditions and under 

the tents, suggesting impairment of electron flow through photosynthetic and/or 

respiratory pathways, thus contributing to lower potential for ATP production and energy 

generation for yield contribution. Thus, the membrane integrity assay was considered to be 

a rapid and reliable tool for thermotolerance screening in cotton cultivars. 

Gene expression was examined for cultivars Sicot 53 and Sicala 45 grown under high (42 

oC) temperatures in the growth cabinet. Rubisco activase expression was quantified using 
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quantitative real-time polymerase chain reaction analysis and was decreased under high 

temperatures and was lower for Sicala 45 than Sicot 53. Maximum cultivar differentiation 

was found after 1.0 h exposure to high temperatures and hence, leaf tissue sampled from 

this time point was further analysed for global gene profiling using cDNA microarrays. 

Genes involved in metabolism, heat shock protein generation, electron flow and ATP 

generation were down-regulated under high temperatures in the growth cabinet and a 

greater number of genes were differentially expressed for Sicala 45, thereby indicating a 

higher level of heat stress and a greater requirement for mobilisation of protective and 

compensatory mechanisms compared with Sicot 53. Cultivar specific thermotolerance 

determination using gene profiling may be a useful tool for understanding the underlying 

basis of physiological and biochemical responses to high temperature stress in the growth 

cabinet. There is future opportunity for profiling genes associated with heat stress and heat 

tolerance for identification of key genes associated with superior cultivar performance 

under high temperature stress and characterisation of these genes under field conditions. 

This research has identified cultivar differences in yield under field conditions and has 

identified multiple physiological and biochemical pathways that may contribute to these 

differences. Future characterisation of genes associated with heat stress and heat tolerance 

under growth cabinet conditions may be extended to field conditions, thus providing the 

underlying basis of the response of cotton to high temperature stress. Electron transport 

rate and relative electrical conductivity were found to be rapid and reliable determinants of 

cultivar specific thermotolerance and hence may be extended to broad-spectrum screening 

of a range of cotton cultivars and species and under a range of abiotic stress. This will 

enable the identification of superior cotton cultivars for incorporation into local breeding 

programs for Australian and American cotton production systems. 
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Chapter 1 Introduction 

1.1 Cotton production systems 
Cotton production for fibre and oilseed extends across five continents, encompassing more 

than 100 nations and constitutes a total land area in excess of 30 million hectares of 

dryland and irrigated farming systems (Australian Bureau of Agricultural and Resource 

Economics 2008).  

The total land base used for cotton production has remained fairly stable since the 1950’s 

but global production has increased (Australian Bureau of Agricultural and Resource 

Economics 2008). This may be attributed to improved yields on a per hectare basis as a 

direct result of specific breeding programs and best management practises encompassing 

new technologies. Increased market competition from synthetic fibres and increased 

competition for land from biofuels and other commodities has meant that the industry as a 

whole needs to set new targets for production, quality and price to ensure the sustainability 

of cotton communities.  

The United States of America, India and China are the largest producers of cotton. 

Although Australia contributes less than 1% of global cotton production (Australian 

Bureau of Agricultural and Resource Economics 2008), the industry focus is on lint 

quality and plays an integral role in exports to high quality markets. The Australian cotton 

industry is highly innovative and achieves high yields that are most likely attributed to 

rapid uptake of research underlying high input agronomic management (Hearn and Fitt 

1992) and plant breeding for local environments.  

Current aims of the Australian cotton industry include the development of superior 

germplasm for lint quality and contribution to a sustainable production system including 

high water use efficiency, high and low temperature tolerance, and pest and disease 
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resistance (Constable et al. 2001; Cotton Research and Development Corporation 1995; 

Thomson et al. 2004; Whyte and Conlon 1990).  

1.2 Breeding for high temperature tolerance 
Broad acre cotton production occurs in both the tropical and temperate regions of 

Australia extending from Emerald, QLD (23.57 oS) in the north to Hillston, NSW (33.48 

oS) in the south and is greatly limited by climatic factors. High temperatures (> 35 oC) 

throughout the growing season are commonplace among the cotton production areas of 

Australia (Table 1-1) and exceed the thermal kinetic window for which metabolic activity 

is most efficient in cotton plants (Burke et al. 1988), thereby limiting the growth and 

development of the crop and hence yield (Hodges et al. 1993). Fibre quality may also be 

adversely affected by high temperatures during fibre development (Constable and Shaw 

1988). 

Table 1-1 Mean number of days equal to or exceeding 35 oC and 45 oC for Australian cotton growing 
regions during the cotton season, between the months of October and April. 

Location Latitude  Longitude Mean no of days ≥ 35 oC Mean no of days ≥ 40 oC 

Emerald 23.57 °S 148.18 °E 66.2 5.5 

St George 28.04 °S 148.58 °E 53.4 4.8 

Bourke 30.09 °S 145.94 °E 77.1 21.7 

Narrabri 30.34 °S 149.76 °E 42.4 2.8 

Preferential selection for heat tolerant cultivars may delay the onset of heat stress in the 

plant throughout the season, thereby minimising yield loss whilst maintaining fibre quality 

in a hot year. Breeding programs have principally relied on yield and fibre quality as 

screening tools in local environments and hence, screening for thermotolerance has been 

largely incidental (Constable et al. 2001). However, this approach involves high 

environmental variability and a long lag-time between intergeneration analyses. Hence, 

the development of a rapid and reliable screening tool for genotype specific 
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thermotolerance could potentially improve the efficiency of breeding programs and aid the 

development of high-yield cultivars for hot growing regions.  

Cotton plants possess mechanisms to buffer the effects of short term high temperature 

stress. This is generally the result of a cascade of physiological and biochemical 

alterations, generated by the up- or down-regulation of stress responsive genes which 

permit survival under unfavourable conditions and genotypic differences in expression of 

the mechanisms under stress may be used to select for thermotolerance. Photosynthesis 

and respiration are decreased under high temperature stress (Reddy et al. 1991a).  Growth 

cabinet and laboratory experiments have shown that analysis of the underlying 

components of these processes such as electron flow through the photosystem  (Wise et al. 

2004), photosynthesis (Salvucci and Crafts-Brandner 2004b), respiratory enzymes 

viability (de Ronde and van der Mescht 1997) and cell membrane disruption (Sullivan 

1971) may be used to quantify heat stress in plants and gene profiling may explain the 

mechanisms underlying these physiological and biochemical processes.  

The repeatability of biochemical assays for heat tolerance is primarily attributed to the 

imposition of a consistent high temperature stress that can be generated to screen multiple 

generations under identical environmental conditions. However, there are few reports on 

whether assumptions of heat tolerance based on growth cabinet and glasshouse 

experiments are applicable to field conditions. High temperature stress under field 

conditions varies both daily and seasonally and is generally confounded by concurrent 

high light, low humidity and drought stress (Marcum 1998). Furthermore, biotic stresses 

such as insect, disease and weed pressure may contribute to low yields under field 

conditions (Hearn and Fitt 1992).  
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1.3 Central research question 
Is there genetic variation for thermotolerance in cotton and can a simple, reliable and 

repeatable method be developed to assess this tolerance for breeding programs? 

1.4 Objectives 
The aim of this study was to understand cultivar differences in heat tolerance by: 

(a) quantifying the effects of high temperatures on cotton grown at various levels of 

plant functioning under field and growth cabinet conditions; 

(b) evaluating and developing rapid and reliable methods for detecting high 

temperature tolerance in cotton cultivars 

A series of field and glasshouse experiments was conducted to evaluate methodologies to 

determine cotton thermotolerance under high temperature stress. High temperature stress 

was imposed in the field by construction of radiation permissible, solar weave tents over 

the crop. Whole plants were also subjected to high temperatures using thermally regulated 

growth cabinets. Leaf samples were incubated in distilled water and subject to high 

temperatures using a thermally controlled water baths in the laboratory.  

Cultivar specific thermotolerance was determined through a series of screening assays and 

measurements at a crop, whole plant, leaf, cell and individual gene level, thus providing a 

multi-scale analysis of thermotolerance in cotton under field and growth cabinet 

conditions (Figure 1-1). The approach applies both a top-down and bottom-up evaluation 

of plant function under high temperature stress to better understand heat tolerance and to 

clearly identify appropriate methodologies for detecting differences in cultivars. Crop 

level measurements of yield and fibre quality were determined and whole plant fruit 

retention measured under field conditions to identify thermotolerant cultivars (Chapter 4). 

Leaf level physiological measurements which may contribute to yield, such as 
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photosynthesis, electron transport, stomatal conductance and transpiration rate were 

measured under field and growth cabinet conditions (Chapter 5). Biochemical assays 

evaluating membrane integrity and enzyme viability were determined under field and 

growth cabinet conditions (Chapter 6) as potential limitations to photosynthesis and 

electron transport rate. Expression of genes associated with metabolic, photosynthetic and 

electron transport pathways were determined under growth cabinet conditions to 

determine potential genetic limitations to biochemical function under high temperature 

stress (Chapter 7). This overall approach facilitated the investigation of the underlying 

contributions to yield under high temperatures, thus allowing evaluation of measurements 

and assays for future thermotolerance determination (discussed in Chapter 8). 
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Chapter 2 Review of Literature 

2.1 Introduction 
The Australian cotton industry has developed high yielding and high quality fibre 

production systems and attributes a significant contribution of this achievement to highly 

innovative breeding programs, specifically focused on the production of premium lint for 

the export market. However, recent pressure has been placed on the industry for the 

development of high yielding and low cost production systems to compete for land 

effectively with other food and bio-fuel commodities, as well synthetic fibres through the 

textile market. 

Breeding programs have recently shifted attention to the development of new germplasm 

with superior stress tolerance to minimise yield losses attributed to adverse environmental 

conditions and unreliable inputs such as irrigation, fertilisers and pesticides. Various 

contributors to yield, such as physiology, biochemistry and gene expression have been 

implemented as screening tools for high temperature tolerance under growth cabinet and 

laboratory conditions but there has been little extension of these mechanisms for analysis 

under field based systems.  

This review examine currents literature on the effects of high temperature stress on cotton 

and other crop species, as well as the identification of thermotolerant cultivars in response 

to heat stress. The review summarises the effects of high temperatures on cotton at a crop, 

whole plant, leaf, cell and gene level and reviews screening mechanisms for cultivar 

specific thermotolerance determination using agronomic, physiological, biochemical and 

molecular tools. This review also highlights the potential for the validation of growth 

cabinet screening mechanisms under field conditions to ascertain the validity of using 

growth cabinet based screening methods to identify stress tolerant cultivars. 
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2.2 Effects of temperature on growth and development of cotton  

2.2.1 Heat stress overview 

Cotton is generally grown in warm to hot regions of New South Wales and Queensland. 

Throughout these regions, temperature and water availability are primary regulators of 

plant growth and production and are often indistinguishable in terms of influence. 

Temperature determines the commencement of the growing season, with most producers 

observing a 14 oC soil temperature minimum at 10 cm depth for a minimum of 3 days 

before planting a crop (Constable and Shaw 1988). Temperature is also a primary 

determinant of season length as delayed maturity increases yield potential (Bange and 

Milroy 2004). 

In Australian cotton cropping systems, the temperature requirement of a cotton crop for 

morphological development may be described as the thermal time function and is a 

measure of degree days based on minimum and maximum daily air temperatures 

(Constable and Shaw 1988). Under limiting conditions such as water deficit and heat 

stress, the leaf or canopy temperatures are required to explain yield whereby yield 

decreases as the leaf temperature and air temperature differential increases (Idso et al. 

1979). This relationship forms the foundation for the development of a crop water stress 

index which accounts for external environmental variables and has applications for 

irrigation scheduling for heat and water deficit stress minimisation (Idso et al. 1981). 

Species and cultivar specificity for leaf temperature of cotton grown under irrigated 

systems  indicates that leaf temperatures may vary for individual plants exposed to similar 

air temperatures (Ehrler 1973), depending on plant morphology and environmental 

variables (Gates 1968) and this may in turn affect a range of morphological, physiological 

and biochemical processes (Burke and Hatfield 1987). Cotton has an optimal thermal 

kinetic window of 23 to 32 oC in which metabolic activity is most efficient (Burke et al. 
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1988). High temperatures (>35 oC) throughout the growing season are common among the 

cotton production areas of Australia and may adversely affect the growth and development 

potential of the crop and ultimately yield (Hodges et al. 1993). High temperatures may 

induce a heat shock response, which may involve various tolerance or avoidance 

mechanisms.  

Heat shock infers the sudden exposure of leaf tissue to supraoptimal temperatures. Under 

field conditions, the heat shock response is generated at around 10 oC above the ambient 

temperature (Gallie 2001) and initiates multiple genes encoding a cascade of physiological 

and biochemical changes associated with acquired thermotolerance pathways, to 

compensate for the increase in temperature (Leone et al. 2003). Such changes include 

modification in enzymatic and membrane composition, photosynthetic apparatus and the 

synthesis of heat-protecting molecules such as heat shock proteins, chaperones and free-

radical scavengers. The capacity for acquired thermotolerance in plants varies greatly 

between species and cultivars and screening genotypes for different physiological or 

biochemical processes may confer tolerance or susceptibility within a plant population 

(Blum and Ebercon 1981), thereby providing a basis for the development of stress 

breeding programs (Klueva et al. 2001).  

Conversely, heat avoidant pathways may be induced under heat shock to protect yield 

under high temperature stress. Avoidance mechanisms include the ability to maintain 

tissue temperature by increasing water uptake or reducing water loss through stomatal 

regulation (Radin et al. 1994), and completion of critical stages of growth and 

development before damage due to abiotic stress is incurred (Turner and Kramer 1980). 

By selecting for yield in hot environments, traditional plant breeding programs have 

inadvertently selected for high temperature avoidance (Radin et al. 1994). Although heat 
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avoidant genotypes typically yield higher (Lu et al. 1997), avoidance mechanisms such as 

increasing heat dissipation through evaporation are largely ineffective in humid or water 

limited environments and are hence not suitable as selection criteria for screening 

thermotolerant cotton cultivars.  

Whole and partial plant physiological measurements and assays must be implemented 

during periods of high temperature stress to ascertain whether a specific cultivar 

predominantly relies on tolerance or avoidance mechanisms to achieve final yield. It is 

important that plants selected for inclusion in breeding programs for production under 

high abiotic stress be moderate in performance for both heat avoidance and tolerance, 

rather than in just one or the other (Sullivan 1971). 

Prolonged exposure to high temperatures throughout the season may result in the 

development of thermal acclimation associated with inherent thermotolerance, which 

enables survival under subsequent supraoptimal and potentially lethal temperatures 

(Klueva et al. 2001). This adaptation is induced by environmental factors and 

counterbalanced by the acclimation potential which is a direct function of genotypic 

composition of the plant (Berry and Bjorkman 1980). Hence, the physiological and 

morphological changes in a plant under high temperature stress largely correspond to the 

daytime growth temperature under which the plant has been previously grown (Bednarz 

and van Iersel 2001). In plants, this adaptation is predominantly associated with an 

increase in the stability of various components of the chloroplast, under high temperature 

stress (Bjorkman et al. 1980). However, this type of thermotolerance does not usually vary 

greatly within a species and is less effective in terms of targeting for thermotolerance 

breeding programs (Klueva et al. 2001). 
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Genes associated with inherent and acquired tolerance may be identified using molecular 

techniques and can be further quantified via various assays and plant physiological 

measurements. There exists great potential for the identification and insertion of novel 

genes into heat susceptible species and cultivars that regulate the production of protective 

proteins, enzymes and molecules under heat stress to maintain plant physiological process 

and yield under high stress conditions (Leone et al. 2003). 

2.2.2 Fibre development 

High temperatures throughout the boll filling and fibre development stage may reduce 

fibre quality (Mauney 1984). The effect of high temperature on fibre quality has been 

determined under field conditions, through the use of staggered planting date (Rahman 

2006) and heated mats to increase temperatures by 1 oC (Pettigrew 2008) in the field, as 

well as under high (30 oC) compared with low (26 oC) temperatures in the growth cabinet 

(30 oC) (Roussopoulos et al. 1998). Rahman (2006) found cultivar differentiation for the 

number of spinnable fibres on a per seed and per surface area basis resulting from additive 

genetic variability under high temperatures in the field. Decreases in spinnable fibres may 

be attributed to decreases in fibre length (Roussopoulos et al. 1998), strength (Pettigrew 

2008; Roussopoulos et al. 1998) and maturity (Pettigrew 2008; Reddy et al. 1999) under 

high temperature stress. Furthermore, the genetic variation and heredity of fibre quality 

parameters is sufficient under control (Cheatham et al. 2003) and high (Rahman 2006) 

temperatures for consideration in breeding programs for fibre quality. However 

temperature responsive decreases in fibre quality are not typically severe enough to result 

in a discount in current markets (Pettigrew 2008). Furthermore, quality parameters such as 

maturity, elongation and micronaire have variable responses to high temperatures 

(Pettigrew 2008; Roussopoulos et al. 1998). Hence, evaluation of fibre quality parameters 
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under high temperature stress may not be a good screening tool for determination of high 

temperature tolerance in the field.  

There are few reports of fibre quality discounts associated with high temperature stress 

(Pettigrew 2008; Rahman 2006; Roussopoulos et al. 1998) and these treatments are 

typically subtle in the context of anticipated fluctuations in temperature across a growing 

season. Furthermore, the effect of prolonged in-situ high temperature stress has not been 

described for cotton cultivars grown under field conditions and must be validated to 

determine whether fibre quality parameters may be employed as screening tools for 

cultivar specific thermotolerance.  

2.2.3 Yield and fruit retention 

High temperatures throughout the flowering period may result in low fruit set due to 

pollen infertility (Burke 2004; Kakani et al. 2005; Marshall et al. 1974), low boll size 

(Reddy et al. 1999; Roussopoulos et al. 1998) and seeds per boll (Pettigrew 2008) or high 

rates of fruit abscission (Reddy et al. 1999; Zhao et al. 2005), thereby limiting yield 

potential (Mauney 1984). Thus, yield and yield component analysis may be used to screen 

for stress tolerance under field conditions.  

Boll size and number are primary determinants of yield potential (Brook et al. 1992). High 

temperature stress may decrease pollen germination and tube elongation at temperatures 

greater than 32 oC (Burke et al. 2004; Kakani et al. 2005; Liu et al. 2006), limit the 

number of ovules laid down during carpel formation (Hearn and Constable 1984; Mauney 

1984) and limit fertilisation percentage of formed ovules (Pettigrew 2008), thereby 

reducing seed numbers per boll and boll dry weight (Reddy et al. 1991b), and ultimately 

yield (Mauney 1984).  
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Boll retention is the primary determinant of yield under stress in the field (Reddy et al. 

1999). Reproductive structures compete directly with leaves for imported assimilates and 

in the event of shortage, assimilates are preferentially directed to leaves to further generate 

energy at the expense of squares (Hearn and Constable 1984). Cotton plants can abscise 

up to 80% of squares and young bolls throughout a growing season (Hearn and Constable 

1984; Oosterhuis 1990). This natural shedding may be accentuated by temperatures 

exceeding 30 oC (Reddy et al. 1991b), insufficient solar radiation interception or moisture 

and nutrient availability and insect damage (Hearn and Constable 1984; Oosterhuis 1990).  

Hence, yield and determinants of yield such as pollen viability and fruit retention may be 

used to detect high temperature stress in cotton and thus, provide potential for 

development as methods for determination of thermotolerance (Liu et al. 2006).  

2.2.4 Vegetative growth 

Protective and avoidance mechanisms are insufficient to completely protect a plant against 

the deleterious effects of prolonged high temperature stress. Temperatures exceeding the 

optimal thermal kinetic window for cotton (Burke et al. 1988) may severely limit plant 

growth and development. Heat stressed cotton plants typically exhibit a lower number of 

branches per plant with a lower branch length, fewer nodes and shorter internodal length 

(Abrol and Ingram 1996; Reddy et al. 1992). Furthermore, these plants are unable to 

achieve their reproductive potential as dry matter is preferentially accumulated in 

monopodial branches rather than in sympodial branches (Reddy et al. 1991b).  

Sympodial branches support 50 to 60 % of total plant leaf area and leaf expansion and 

development may be reduced under high temperatures throughout the growing season 

(Roussopoulos et al. 1998). Reductions in the light harvesting potential of the plant may 

limit energy generation via photosynthetic and respiratory electron transport chains 
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thereby reducing vegetative dry matter accumulation and fruit load development for less 

thermotolerant cultivars (Roussopoulos et al. 1998). Crafts-Brander and Salvucci (2004) 

found exposure of cotton plants to 37 or 40 oC night temperatures over a 4 day period 

significantly decreased dry matter accumulation and leaf area production, whilst root 

growth was inhibited in the 40 oC treatment groups. Reddy et al. (1991b) also found 

suppressed biomass accumulation at 40/30 oC day/night temperatures in cotton, thereby 

resulting in lower main stem leaf area and variable plant height. This suppressed dry 

matter production may be partly attributed to elevated respiration rates and an increase 

photosynthetic requirement (Reddy et al. 1992; Reddy et al. 1991b). 

2.2.5 Heat stress proteins 

Heat shock protein (HSP) synthesis is a primary protective buffer against the deleterious 

effects of heat shock in field grown plants. Although the exact mechanism of heat 

tolerance in cotton is unknown, the synthesis and accumulation of heat stress proteins 

during rapid or gradual stress may contribute to thermotolerance (Klueva et al. 2001) as 

well as tolerance to other abiotic stresses (Busch et al. 2005; Larkindale and Vierling 

2008; Piper et al. 1997). Genes regulating the expression of heat shock proteins under 

high temperatures have been identified (Larkindale and Vierling 2008; Lohmann et al. 

2004) and provide potential for targeted breeding programs. 

Under maximal heat stress, the synthesis and accumulation of high molecular weight heat 

shock proteins such as HSP70 and HSP90 and mRNA may increase up to ten-fold (de 

Ronde et al. 1993) and may be cultivar dependent (Fender and O'Connell 1989). It is 

proposed that HSP70 may prevent protein denaturation during stress and plants with 

blocked or inactivated HSP70 synthesis are susceptible to heat injury (Burke et al. 1985).  
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Although the exact mechanism of protection against heat stress is unknown for many heat 

shock proteins (Malik et al. 1999), heat shock proteins associated with chloroplasts, 

ribosomes or mitochondria may also contribute to thermotolerance. For example, the 

small, methionine-rich chloroplast heat-shock protein protected PSII and the electron 

transport chain to an extent that it completely accounted for heat acclimation in pre-heat-

stressed tomato plants (Heckathorn et al. 1998). Differences in cultivar thermotolerance 

attributed to heat shock protein expression provide further evidence that breeders may 

utilise genetic resources and crop management to develop thermotolerance in new crop 

cultivars. 

2.2.6 Photosynthesis and electron transport 

Photosynthesis is largely regulated by temperature and is particularly heat sensitive (Burke 

et al. 1988; Hodges et al. 1993; Lu et al. 1997; Perry et al. 1983; Reddy et al. 1991a; 

Schrader et al. 2004; Wise et al. 2004). The optimal temperature for gross photosynthesis 

in cotton is approximately 30 oC (Bednarz and van Iersel 2001; Perry et al. 1983; Reddy et 

al. 1998) with an ideal range between 23 and 33 oC for metabolic activity and 

photosynthesis (Burke et al. 1988). Hence high temperatures (>35 oC) throughout the 

season may limit photosynthetic potential for plant growth and hence yield (Lu et al. 

1997). 

At higher temperatures, net photosynthesis decreases proportionally and inversely to 

photorespiration (Berry and Bjorkman 1980). This decrease may be attributed to both a 

decrease in the electron transport rate and a decline in activity of rate-limiting enzymes, 

particularly those associated with photosynthetic and respiratory channels (Bjorkman et al. 

1980; Burke et al. 1988) such as Rubisco (Ribulose-1,5 biphosphate 

carboxylase/oxygenase).  
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Rubisco is a heat-labile enzyme (Law and Crafts-Brandner 1999; Salvucci and Crafts-

Brandner 2004a) that is regulated by Rubisco 1,5-biphosphate (RuBP) and has potential to 

limit growth and development in C3 and C4 plants. It has been proposed that the 

regeneration of RuBP, via energy supplied from the electron transport chain, is the 

primary limitation to net photosynthesis (Salvucci and Crafts-Brandner 2004a; Stidham et 

al. 1982). Considering that stromal enzymes are generally more stable than PSII under 

heat stress, temperature-induced suppression of the electron transport chain may limit the 

functionality of these enzymes which themselves, are relatively stable under moderate heat 

stress  (Wise et al. 2004). However, a model proposed by Crafts-Brander and Salvucci 

(2004) suggested that the primary biochemical limitation to photosynthesis at high 

temperatures and ambient CO2 concentrations is in fact the activation state of Rubisco. 

This function is regulated by the activity of Rubisco activase and is not dependent on the 

electron transport energy pathway as chlorophyll fluorescence signals from PSII were not 

affected at these Rubisco-limiting temperatures. Cultivar specificity for Rubisco suggests 

that assays evaluating genes associated with Rubisco activity may be useful for screening 

programs for thermotolerance (Pettigrew and Turley 1998). 

At high temperature, the down-regulation of PSII is most likely the prominent limitation 

to photosynthesis (Klueva et al. 2001). However, protein denaturation associated with 

PSII protein membrane complexes did not occur at temperatures below 45 oC (Al-Katib 

and Paulsen 1999). It has been proposed that the susceptibility of photosynthetic decline at 

high temperatures is mostly likely attributed to instability of PSII in the thylakoid 

membranes (Santarius 1973), particularly at the water-splitting complex and subsequently, 

for noncyclic photophosphorylation (Al-Katib and Paulsen 1999). Al-Katib and Paulsen 

(1999) found a similar response of protoplasts, chloroplasts and thylakoids at temperatures 

greater than 40 oC, whereas stomatal effects and stromal enzymatic activity remained 
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relatively stable across a range of high temperature treatments. This indicates that a 

common component of PSII is essential for high temperature tolerance.  

High temperature stress (35 to 45 oC) can alter the conformation, composition and hence, 

permeability of the thylakoid membrane in the chloroplasts at temperatures that do not 

affect electron transport and ATP synthesis (Bukhov et al. 1999; Suss and Yordanov 

1986). Cyclic phosphorylation is then unable to compensate for the leakiness of the lipid 

membrane resulting in disruption of electron transport between PSI and PSII  thereby 

reducing energy availability (Stidham et al. 1982). This may further reduce or alter 

enzymatic activity and limit net photosynthesis at temperatures above 35 oC (Havaux et al. 

1996).  

Under high temperature stress, electron transport may be further directed to molecular 

oxygen, eliciting the generation of reactive oxygen species that may cause further damage 

to photosynthetic organelles (Cothren 1999). The onset of oxidative stress is rapid upon 

exposure to high temperatures and the effects of this stress are partially buffered through 

the scavenging and processing of active oxygen species by plant-based antioxidants and 

this process is generally known as quenching (Cothren 1999). Excited oxygen states are 

extremely reactive and cytotoxic and may cause peroxidation of the lipids in the 

plasmalemma and intracellular organelles resulting in degradation of cell structure and 

cytoplasmic leakage (Suss and Yordanov 1986) decreased viability of respiratory enzymes 

in the mitochondria, reduced affinity for chloroplastic carbon fixation, photoinhibition and 

photooxidation in the chloroplast. Although conversion of violaxanthin to zeathanthin via 

the xanthophyll cycle (Bilger and Bjorkman 1994) may moderate membrane fluidity under 

mild heat stress (Suss and Yordanov 1986) and enable the down-site synthesis of heat 

shock proteins (Wise et al. 2004), this protective mechanism may be insufficient at higher 
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temperatures that do not damage PSII (Salvucci and Crafts-Brandner 2004c). Hence, 

quenching analysis may be used to indicate species and cultivar specific thermotolerance, 

before damage to PSII is evident (Salvucci and Crafts-Brandner 2004c). Furthermore, 

genetic modification of the quenching pathway may be used to reduce oxidative stress and 

hence, increased thermotolerance of plant species (Kornyeyev et al. 2001). 

Characteristics associated with high photosynthetic rates are cultivar specific (Pettigrew 

and Turley 1998; Reddy et al. 1991a) and highly heritable (Abdullaev et al. 2003), thus 

providing a potential target for breeding programs to increase the heat tolerance of 

commercial cotton cultivars (Lu et al. 1997). Although cultivar specificity for 

photosynthesis has been determined under high temperatures in the growth cabinet (Bibi 

et al. 2008) little information exists on cultivar specificity of photosynthesis and 

fluorescence under in-situ high temperature stress in field conditions. Hence, 

photosynthesis and fluorescence need to be evaluated for cotton cultivars grown under 

high temperatures in the field to enable gene expression of thermotolerance cultivars in the 

field for incorporation into breeding programs. 

2.2.7 Stomatal conductance and transpiration rate 

Transpiration is the primary contributor to maintenance of leaf temperature under high 

temperature stress in upland cotton (Lu et al. 1997; Radin et al. 1994; Rahman 2005). 

Leaf temperature is regulated by leaf area and boundary layer conductance, stomatal 

conductance, heliotropism and radiation interception (Ayeneh et al. 2002; Leidi et al. 

1993; Lu et al. 1997; Radin et al. 1994). High temperatures, in the absence of drought 

stress, induce increased stomatal aperture thereby permitting heat loss through 

transpiration and reducing leaf temperature whilst still facilitating gaseous exchange 

(Bednarz and van Iersel 2001; Radin et al. 1994). In cotton, leaf temperature is very 

volatile and may change by more than 1 oC per second (Wise et al. 2004). Morning leaf 
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temperatures are generally within a few degrees of the ambient air temperature. Midday 

and afternoon temperatures that exceed 35 oC may result in variable  leaf temperatures that 

may exceed or be lower than ambient temperatures (Wise et al. 2004). 

Stomatal conductance and leaf temperature are correlated with yield (Lu et al. 1997; Radin 

et al. 1994). In fact, leaf temperatures can be up to 10 oC lower than ambient air 

temperatures (Radin et al. 1994). Hence, traditional breeding programs that select cotton 

cultivars for yield under hot environments, inadvertently and simultaneously select for 

high temperature avoidance through evaporative cooling potential (Rahman et al. 2004). 

However, highly conducting genotypes may not necessarily be high yielding under 

limiting and optimal environments (Leidi et al. 1993; Lopez et al. 1993) and hence yield 

should be included in breeding programs screening for stomatal conductance under stress. 

Heat avoidance through evaporative cooling has some degree of species (Lu et al. 1994) 

and cultivar specificity under drought (Radin et al. 1994) and high temperature stress 

(Rahman 2005). However, little information is available on cultivar differences in 

stomatal conductance and transpiration rate under in-situ high temperature stress in the 

field. Identification of cultivar differences in stomatal conductance and transpiration under 

in-situ field high temperature stress may indicate the suitability of these methods as 

screening tools for cultivar specific thermotolerance under field conditions. 

2.2.8 Cellular membrane integrity 

Heat stress may cause irreversible disruption and damage to cell membranes. Under 

optimal conditions, cell membranes are freely permeable to CO2 and O2, slightly 

permeable to water and require transport proteins to carry inorganic ions and hydrophilic 

solutes (e.g. sucrose and amino acids) across the plasma membrane and tonoplast. High 

temperatures weaken the hydrogen bonds between polar groups of proteins within the 
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fluid bilayer of the membrane, thereby causing a decrease in the specificity of membrane 

permeability, a decrease in transport system activity and disruption and damage to the cell 

membrane (Gupta 2007). Cell membrane damage may result in leakage of internal 

cytoplasmic electrolytes to the surrounding environment, which may be quantified by 

directly measuring the changes in electrical conductivity of the solution containing plant 

tissue prior to, and after exposure to high temperatures (Rahman et al. 2004). The ability 

of the cell membrane to remain intact after exposure to high temperature stress may be 

indicative of species or cultivar specific thermotolerance (Raison et al. 1980). 

The membrane integrity method has been used for discrimination between cultivars and 

hybrids of cotton (Ashraf et al. 1994; Blum and Ebercon 1981; Rahman et al. 2004; Sethar 

et al. 1997), soybeans (Martineau et al. 1979a; Sethar et al. 1997), sorghum (Sullivan 

1971), bean (Schaff et al. 1987) and wheat (Saadalla et al. 1990b), under both greenhouse 

and field conditions (Ashraf et al. 1994; Rahman et al. 2004) and at various growth stages 

(Ashraf et al. 1994). Furthermore, Ashraf et al. (1994) noted that screening for 

thermotolerance at initial and latter growth stages were positively correlated, thus 

minimising the inter-generational time in any breeding program.  

Cellular membrane thermostability (CMT) has been directly correlated to whole-plant 

high temperature tolerance in Kentucky bluegrass (Marcum 1998), soybean (Martineau et 

al. 1979a), wheat (Shanahan et al. 1990) and cotton (Rahman et al. 2004). Furthermore, 

this correlation in the presence of stress may be used to discriminate between cotton 

cultivars and hybrids for genetic inclusion in breeding programs (Rahman et al. 2004). 

However, cultivar discrimination for thermotolerance based on the CMT method is 

dependent on the further development of the method in terms of heritability and 

combining ability (Bajji et al. 2002; Martineau et al. 1979b; Rahman et al. 2004). 
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Breeding for cultivar specificity with specific biochemical pathways may provide viable 

mechanisms for the development of cultivars with superior thermotolerance. Heat shock 

proteins aid in the protection of biochemical pathways in heat stressed plants (Malik et al. 

1999; Piper et al. 1997; Queitsch et al. 2000; Sotirios et al. 2006) but is not the sole 

mechanism of thermotolerance (Larkindale and Vierling 2008). Superior membrane 

integrity under stress may be attributed to increased membrane rigidity as a result of rapid 

isomerisation of naturally occurring cis to trans configuration unsaturated fatty acids 

(Murakami 2000). High antioxidant activity may minimise membrane damage as a result 

of phospholipid degradation associated with  lipid peroxidation (Liu and Huang 2000) and 

heat-induced oxidative stress (Larkindale et al. 2005). Manipulation of calcium channels 

(Bhattacharjee 2008) and sterol conjugation under stress may also aid in breeding plants 

with optimal membrane fluidity and a higher relative thermotolerance (Gupta 2007). 

Assays based on cellular membrane integrity are considered easy, reliable, cost effective 

and repeatable and provide an invaluable resource to describe the underlying biochemical 

mechanisms of stress tolerance (Marcum 1998). 

2.2.9 Enzyme viability 

Damage to cell membranes is likely to reduce the efficacy of downstream respiratory 

enzymes and electron transport chains (Taiz and Zeiger 2006) at temperatures exceeding 

40 oC (Burke et al. 1988).  

The tetrazolium viability test is a simple assay that may be used to determine the 

physiological viability of a large number of plant samples at a particular point in time 

(Burke 2007; de Ronde and van der Mescht 1997) by assessment of dehydrogenase 

activity in mitochondrial respiratory electron transport chains. Heat tolerant plants are 

better able to reduce 2,3,5-triphenyltetrazolium salts in the mitochondria to an insoluble 

red formazan compound (de Ronde and van der Mescht 1997) by accepting electrons from 
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the electron transport chain (Towill and Mazur 1975) via the dehydrogenase pathway 

(Nachlas et al. 1960). This reduction can be correlated back to the level of enzyme 

viability (Towill and Mazur 1975). This assay can be used for screening a range of cotton 

cultivars for thermotolerance (de Ronde and van der Mescht 1997). 

Cultivar specificity for enzyme viability has been similarly reported for water deficit stress 

(de Ronde and van der Mescht 1997), low (McDowell et al. 2007) and high temperature 

stress (Chen et al. 1982; de Ronde and van der Mescht 1997; Porter et al. 1995; Schaff et 

al. 1987). Thermotolerant cultivars have increased capacity for tetrazolium reduction 

under high temperature stress compared with the control (de Ronde and van der Mescht 

1997). However, heat tolerance and drought tolerance can be either correlated positively 

or negatively, depending on environmental conditions. Hence, genetic selection for 

breeding programs should be undertaken with consideration for the interaction between 

drought and heat tolerance rather than either factor independently (de Ronde and van der 

Mescht 1997). 

2.2.10 Gene expression 

A cascade of morphological, physiological and biochemical responses are initiated under 

exposure of plants to short and long term high temperature stress. Molecular techniques 

provide an insight as to the genetic basis of responses to heat stress.  DNA microarrays are 

a powerful tool for surveying the expression patterns of thousands of genes 

simultaneously. This enables rapid determination of differential gene expression between 

two RNA populations, thus providing a global and integrated analysis of biological 

processes in response to stress. Quantitative trait locus (QTL) mapping is also an effective 

method for identifying the underlying pathways contributing to changes in yield and 

physiology under abiotic stress in cotton (Saranga et al. 2004). However, the low level of 

DNA polymorphism in cotton limits the application of QTL mapping to interspecific 
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families and backcross lines (Chen et al. 2007). Key genes and gene families involved in 

the development of heat tolerance provide a platform for further characterisation and 

identification of stress-responsive genes which may be targeted for breeding programs for 

stress tolerance (Chinnusamy et al. 2005; Ishitani et al. 2004; Zhang and Blumwald 2001).  

Abiotic stress and acclimation to abiotic stress induces a cascade of differential gene 

regulation (Busch et al. 2005) with respect to morphological, physiological and 

biochemical plant pathways and global gene profile may be used to identify the response 

of individual genes or general pathways to such stress (Busch et al. 2005; Klok et al. 

2002) particularly when no obvious phenotype is attributed to the stress response 

(Kennedy and Wilson 2004).  

Microarray analysis has been used to determine cultivar differences in gene expression for 

salt stress in rice (Sahi et al. 2003), drought stress in sorghum (Sharma et al. 2006) and 

heat stress in fescue (Zhang et al. 2005), drought and heat stress in Arabidopsis (Sakuma 

et al. 2006) and a range of abiotic stresses in potato (Rensink et al. 2005). However, genes 

associated with these stresses may confer overall stress tolerance and hence, may be used 

as a model for further investigation under heat stress (Piper et al. 1997; Rensink et al. 

2005; Sakuma et al. 2006). Gene expression under high temperature stress has been 

described for a range of species including Arabidopsis (Busch et al. 2005; Sakuma et al. 

2006), Agrostis scabra (Tian et al. 2009), sunflower (Hewezi et al. 2008) and potato 

(Rensink et al. 2005). Whilst these species can be used as a platform for research into gene 

expression in cotton, there is little specific research on gene functionality in cotton (Dowd 

et al. 2004). 

Heat shock proteins and transcription factors play an integral role in thermotolerance (Gao 

et al. 2008; Larkindale et al. 2005; Lee et al. 1995; Lohmann et al. 2004; Lu et al. 1995; 
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Malik et al. 1999; Piper et al. 1997; Queitsch et al. 2000; Salvucci 2008; Schrader et al. 

2004; Sotirios et al. 2006). Genes involved in osmotic adjustment (Alia et al. 1998), 

ethylene synthesis (Larkindale et al. 2005), amino acid synthesis (Fouad and 

Rathinasabapathi 2006), calcium dependent pathways (Lu et al. 1995; Sotirios et al. 

2006), abscisic acid synthesis (Larkindale et al. 2005) and membrane protection (Lee et al. 

1995) are thought to confer thermotolerance in some plant species.  

Genes involved in energy conservation through ATPase activity and photosynthesis 

regulation via Rubisco viability may also contribute to energy generating pathways 

involved in thermotolerance. However, a large proportion of transcription factor and heat 

shock protein genes have been identified under high temperatures but have no known 

function (Malik et al. 1999). Furthermore, there has been little evaluation of the 

expression of genes involved in thermotolerance at high temperatures under field 

conditions. Hence, gene profiling for cotton cultivars may provide an overall indication of 

the viability of molecular tools for genotype screening under field conditions.   

2.3 Conclusion  
The major opportunities for research that emerge from this literature review are listed 

below. These need to be addressed in order to quantify the effects of high temperatures on 

cotton at various levels of plant function under field and growth cabinet conditions and to 

evaluate and develop rapid and reliable methods for detecting high temperature tolerance 

in cotton cultivars.  

The physiological, biochemical and molecular basis of cultivar specific thermotolerance 

has not been described for Australian production systems. The Australian cotton system 

differs from production systems in the Northern hemisphere in terms of environmental 

conditions, crop management, germplasm and breeding objectives. Hence, cultivar 
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specific thermotolerance needs to be evaluated under local Australian production systems 

for future breeding programs. 

Little is known about the cultivar specific changes in physiology and biochemistry that 

result from exposure of cotton plants to high temperature stress in the field. Changes in 

plant function have been described for many plant species, but there have been few 

comparisons between cotton cultivars. 

The use of physiological and biochemical screening tools for thermotolerance have not 

been validated under in-situ high temperature stress in the field. Growth cabinet and 

laboratory based screening tools need to be validated under field conditions to ascertain 

their suitability for inclusion in plant breeding programs that incorporate screening for 

stress tolerance. 

The molecular basis of cultivar specific heat tolerance in cotton has not been described. 

High instances of differential expression of genes with ‘unknown function’ limit progress 

in the identification of heat responsive genes. Linking this understanding with higher crop 

measurements such as yield and physiology may help to target specific genes for superior 

biochemical, physiological or morphological functioning under stress conditions. 

Gene expression under high temperatures in the growth cabinet has not been validated 

under field conditions. The field is generally a more variable environment and hence gene 

expression in the field will most likely represent changes in the expression of whole 

groups of genes involved in a range of environmental stresses, rather than one specific 

gene. 
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Chapter 3 General Materials and Methods 

3.1 Introduction 
Experiments were conducted to investigate the effect of high temperature stress on 

cotton and to evaluate methods to determine thermotolerance in response to this stress. 

This chapter describes cotton cultivars, site and climate descriptions, experimental 

design, field plot and growth cabinet pot management, treatments and measurements 

that were common to experiments discussed in Chapters 4 to 7. Materials and methods 

specific to each chapter are described in the relevant chapter. 

3.2 Genotypes 
Normal leaf, medium maturity and non-transgenic cultivars of upland cotton 

(Gossypium hirsutum L.) were screened under glasshouse and field conditions for 

thermotolerance. Cultivar Sicot 53 and breeding line CSX 99209-376 were selected as 

relatively thermotolerant genotypes whereas Sicala 45 and Sicala V-2 were chosen as 

cultivars with lower relative thermotolerance, based on yield performance in warm and 

hot growing regions. Although these genotypes all originate from the CSIRO breeding 

program (Table 3-1) and share a number of common ancestors, the coefficients of 

parentage are low and thus are relatively diverse in respect to available commercial 

germplasm (Table 3-2). The four genotypes were grown under field conditions in all 3 

growing seasons to enable yield comparisons across the sites and seasons. On the basis 

of preliminary experiments and data from the plant breeding program, Sicot 53 and 

Sicala 45 were used for all experiments as a model to evaluate methods for testing 

cultivars with differing levels of thermotolerance.  
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Table 3-1 Parentage for cotton genotypes Sicot 53, CSX 99209-376, Sicala 45 and Sicala V-2, where 
the asterisks (*) denote CSIRO breeding lines. 

Cultivar Citation Parent 1 Parent 2 

Sicot 53 (Constable 2000) Sicot 50  83203-183* 

CSX 99209-376*  Sicot 80 Delta Topaz 

Sicala 45 (Reid 2004) Sicala 40 Sicala V-1 x 84009-47* 

Sicala V-2 (Reid 1995) DP 90 x Tamcot SP37H DP 190 x 75007-3* 

 

Table 3-2 Coefficients of parentage for Sicot 53, Sicala 45, CSX 99209-376 and Sicala V-2, where 
0.000 represents genotypes with no common ancestors and 1.000 represents genotypes that are 
identical. 

 Sicot 53 Sicala 45 CSX 99209-376 Sicala V-2 

Sicot 53 1.000 0.109 0.155 0.203 

Sicala 45 0.109 1.000 0.063 0.094 

CSX 99209-376 0.155 0.063 1.000 0.053 

Sicala V-2 0.203 0.094 0.053 1.000 

3.3 Field experiments 
Field-based experiments were used to provide field grown plant tissue samples for 

yield, fibre quality, gas exchange, fluorescence, membrane stability and enzyme 

viability measurements. 

3.3.1 Site and climate descriptions 

Field experiments were conducted over three consecutive cotton growing seasons in two 

locations between 2005 and 2007 (Table 3-3). These two locations were selected to 

enable evaluation of cultivar thermotolerance in two distinct climates. The Narrabri 

(Australia) field site was a hot and dry climate, whereas the Texas (United States of 

America) field site was a hot and humid growing environment (Table 3-3). 



 

Table 3-3 Location and year of each field experiment. 

Experiment Season Year Planting date Harvest date Location Country  Latitude  Longitude 

Field 1 2006 14-Oct-05 10-May-06 Narrabri AUS 31o12’S 149o59’E 

Field 2 2006 25-Apr-06 11-Sep-06 Texas USA 30o32’N 96o26’W 

Field 3 2007 18-Oct-06 20-Apr-07 Narrabri AUS 31o12’S 149o59’E 

 

 

Table 3-4 Seasonal climate data between sowing and harvest dates for seasons 1 (2006) and 3 (2007) in Narrabri and season 2 (2006) in Texas.  

Season  Average 

maximum 

temperature 

(oC) 

Average 

minimum 

temperature 

(oC) 

Average 

temperature 

(oC) 

No days 

>35 oC 

Accumulated 

day degrees 

Average 

daily 

radiation 

(MJ m-2) 

Photothermal 

quotient 

(Villalobos and 

Ritchie 1992) 

Precipitation 

(mm) 

Average daily 

relative 

humidity (%) 

1 31.5 16.2 23.9 59.0 2580.3 24.6 2.2 532.8 74.9 

2 33.6 20.8 27.2 55.0 2128.9 24.9 2.0 319.0 73.4 

3 32.9 17.2 25.0 65.0 2443.0 25.0 1.7 182.0 67.8 
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Narrabri  

Field experiments in seasons 1 and 3 were undertaken at the Australian Cotton Research 

Institute, Narrabri, Australia. The soil was a uniform grey cracking clay (Australian soil 

taxonomy: Grey Vertosol, USDA soil taxonomy: Typic Haplustert) with a clay fraction 

percentage of 60 to 65%, pH of 8.0 - 8.8 and has inherently low organic matter and 

nitrogen. Long term average annual rainfall is 643 mm with a mean maximum temperature 

of 26.7 oC and a mean minimum of 11.6 oC (Australian Government Bureau of 

Meteorology 2008). Season specific climatic data are presented in Table 3-4.  

Texas 

Experiment 2 was conducted at the Texas Agricultural Experiment Station located near 

College Station, Burleson County, Texas, USA during the 2006 cotton growing season. 

The soil was a Weswood silt loam (USDA Soil taxonomy: Udifluventric Halpustepts) 

with a pH of 8.3 and conductance of 193 µmho cm-1. Season specific climatic data are 

presented in Table 3-4.  

3.3.2 Field experimental design and plot management 

Narrabri  

A randomised complete block design with four replicates was used for field experiments 

in Narrabri during seasons 1 and 3. Blocks were replicates, blocked down the field from 

the head ditch to the tail drain. Plots were 19 m in length, with 9 raised beds at 1 m 

spacing. Samples were only taken from plants growing on the inner 7 rows and from the 

inner 17 m of the plot. 

Nitrogen was applied at a rate of 200 kg ha-1 as anhydrous ammonia and phosphorous at a 

rate of 132 kg ha-1 as mono-ammonium phosphate prior to planting to ensure adequate 

nitrogen and phosphorous nutrition for the crop. Plots were pre-watered prior to planting 
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and maintained with full furrow irrigation utilising high input management and insect 

control throughout the season as described by Hearn and Fitt (1992). 

All cotton seed was pre-treated with Dynasty® fungicide seed treatment (Syngenta) and 

planted with a commercial row crop planter (Kinze) at 12 seeds m-2.  Season 1 was planted 

on the 14th October, 2005 and season 2 was planted on the 18th October, 2006.  

In-plot temperature and relative humidity were recorded on a Tiny Tag Ultra (TGX-3680), 

10 cm below the maximal canopy height and at least 3 replicates were recorded. Complete 

meteorological data at a fully serviced weather station were measured 2 km from the field 

site.  

Texas  

A randomised complete block design with four replicates was used. Blocks were 

replicates, blocked down the field from the head ditch to the tail drain. Whole plots were 

5.8 m long with 4 raised beds, 1 m apart. Samples were only taken from plants growing on 

the inner 2 rows of the plot, and from the inner 3.8 m of the row. 

The soil was pre-prepared with nitrogen (134 kg ha-1), Caparol® 4 L broadleaf herbicide 

(0.57 L ha-1) and Dual® pre-emergent herbicide (0.26 L ha-1). Treated cotton seed was 

planted on the 24th April, 2006 at 13 plants m-2 with a John Deere max emerge vacuum 

planter. Plots were furrow irrigated and pest pressure was rigorously controlled.  

In-plot temperature and relative humidity data was collected with a Tiny Tag Ultra (TGX-

3680), 10 cm below the canopy height, with at least 3 replicates. A full meteorological 

survey was recorded 0.5 km from the field site at a fully serviced weather station. 

3.3.3 Temperature treatments 

In-situ high temperature stress was imposed in the field by the construction of 

Solarweave® tents over the crop canopy (Figure 3-1) at multiple times during the season 
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(Table 3-5). Tents were erected at 4 d post irrigation to ensure adequate soil water and 

relatively uniform leaf temperature (Gardner et al. 1981), A 1 m buffer area was left 

between the alleyway and the front entrance to the tents, which were constructed at the 

front of the plot (Figure 3-1). The tents then covered the next 3 m of the row. A 1 m buffer 

was left between the tents and the control plants. The control plants were sampled from 

the next 3 m of the row. A 1 m buffer area was similarly left between the control plants 

and the alleyway at the back of the plot. All tents were assembled between the first square 

and cut-out stages of crop development. The tents dimensions were as follows; 2800 mm 

length, 2800 mm breadth and 2600 mm height. A 700 mm gap was left between the soil 

surface and the Solarweave® canvas at the front and back of the tent to permit air flow 

down the rows. At the end of the measurement period, the tents were removed and 

transferred to a different section of the plot, where similar measurements were taken on a 

later irrigation cycle.  

Table 3-5 Dates of construction and dismantlement of the tents for seasons 1 (2006) and 3 (2007) in 
Narrabri and season 2 (2006) in Texas and the associated day degrees associated with these dates. 

Season Tent Construction Dismantlement No days 

under tent 

No degree 

days under 

tent 
Date Day 

Degrees 

Date Day 

Degrees 

1 1 3-Feb-06 1523.69 9-Feb-06 1635.11 6 111.42 

1 2 23-Feb-06 1840.08 6-Mar-06 1974.07 11 133.99 

2 1 13-Jul-06 1106.55 19-Jul-06 1213.85 6 107.3 

3 1 17-Dec-06 537.72 22-Dec-06 811.89 5 274.17 

3 2 16-Jan-07 1160.87 20-Jan-07 1227.41 4 66.54 

 

  



 

Figure 3-1 Solarweave® tents used to impose in
3 (2006) at the Narrabri field site.

Solarweave® tents used to impose in-situ high temperature stress in the field during season 
3 (2006) at the Narrabri field site. 
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situ high temperature stress in the field during season 
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Solarweave® is a clear, radiation permissible fabric.  It has a nominal shade value of 18 % 

and may increase the relative proportion of diffuse radiation reaching the canopy; it was 

considered an appropriate commercially available fabric for field experiments, particularly 

attributed to high durability under adverse climatic conditions (Healey and Rickert 1998; 

Healey et al. 1998). These tents were erected above the crop canopy to raise temperatures 

above the high temperature threshold for cotton (35 oC) under the fabric (Table 3-6) but 

still facilitate airflow down the rows to permit effective gaseous exchange (Lopez et al. 

2003a). Mean temperature under the tent was higher than mean temperature under ambient 

field conditions in all 3 seasons (Table 3-7). However, relative humidity was inadvertently 

increased (Table 3-7). Although both sites experienced high temperatures throughout the 

cotton season, the Texas site had a higher average ambient temperature than the Narrabri 

site (Table 3-4). Air temperatures under the control and tents are presented in Figure 3-2 

for seasons 1, 2 and 3. 
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Table 3-6 Number of h above the thermal kinetic window (32 oC) and high temperature threshold (35 
oC) for cotton, under ambient field conditions and under the tents for seasons 1 (2006) and 3 (2007) in 
Narrabri and season 2 (2006) in Texas.  

Season Tent 

no. 

No hours  

> 32 oC 

No hours  

> 35 oC 

No hours  

> 40 oC 

No hours  

> 45 oC 

No hours  

> 50 oC 

Control (ambient) 

1 1 57.3 35.2 6.3 0.0 0.0 

1 2 26.8 6.5 0.0 0.0 0.0 

2 1 82.8 66.3 20.7 0.0 0.0 

3 1 26.3 17.7 3.5 0.0 0.0 

3 2 44.0 17.3 0.0 0.0 0.0 

Tent 

1 1 69.7 62.8 40.8 20.7 5.8 

1 2 45.8 30.2 8.8 1.7 0.2 

2 1 80.7 71.5 55.5 33.2 8.5 

3 1 30.5 28.0 23.4 0.0 0.0 

3 2 62.7 46.5 26.5 6.8 0.2 

 

Table 3-7 Mean temperature and relative humidity under ambient (control) and tent temperature 
regimes in the field for seasons 1 (2005) and 3 (2006) in Narrabri and season 2 (2006) in Texas. The 
mean is taken from 3 replicates. 

Season Tent No Control Mean Tent Mean F test P value l.s.d. 

Temperature (oC)     

1 1 29.9 33.7 <0.001 0.72 

1 2 23.8 25.5 <0.001 0.41 

2 1 31.3 33.1 <0.001 0.72 

3 1 26.4 25.6 0.026 0.79 

3 2 27.1 29.0 <0.001 0.62 

Relative humidity (%) 

1 1 56.2 80.3 <0.001 1.09 

1 2 70.6 74.7 <0.001 1.29 

2 1 62.7 66.3 0.039 2.59 

3 1 50.6 51.9 n.s. 1.97 

3 2 61.6 69.3 <0.001 1.59 
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Figure 3-2 Air temperatures (oC) under the control and under tent 1 in (a) season 1 (Narrabri, 2006), 
(b) season 2 (Texas, 2006) and (c) season 3 (Narrabri, 2007 and under tent 2 in season 1 (Narrabri, 
2006) and season 3 (Narrabri, 2007). The average temperature during the measurement period is 
represented by a solid line for the control and a dotted line for the tent. 

3.3.4 Measurements 

Under ambient (control) field conditions, leaves were sampled at least 1 m from the edge 

of the plot. For samples under high temperature (tent) conditions, leaves were sampled 

from the middle of three rows located under the tent, leaving a 1 m buffer on all sides. 

Photosynthesis, electron transport rate, stomatal conductance, transpiration rate, 
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membrane integrity and enzyme viability was measured on the third youngest fully 

expanded leaf of actively growing cotton plants under all temperature treatments. This 

minimised the effects of leaf age on various physiological and biochemical functioning 

under the various treatments (Perry et al. 1983).  

3.4 Growth cabinet experiments 

3.4.1 Site description and pot management 

Plants were established in a glasshouse at the Australian Cotton Research Institute, 

Narrabri, Australia. Cotton plants were grown in 250 mm diameter, 9 L pots, filled with a 

grey cracking clay, taken from a nearby field. Each pot contained 2 plants and was 

arranged in a completely randomised design with 4 replicates. Pots were watered at 0700 h 

daily for 2 min by drip irrigation delivering 4 to 4.5 L h-1. Nutrients were applied 

fortnightly with 500 mL, 0.013 g mL-1  Miracle-grow® all purpose water soluble fertiliser 

(Scotts Australia Pty Ltd, Baulkham Hills, Australia) (Table 3-8) with 2.0 g magnesium 

sulphate heptahydrate (MgSO4.7H2O).  

Table 3-8 Composition of Miracle-grow fertiliser used in glasshouse and growth cabinet pot 
experiments (N:P:K = 15:13.1:12.4) 

Nutrient Compound % (w/v) 

Nitrogen  Mono-ammonium and di-ammonium phosphate 6.80 

Nitrogen  Urea 8.20 

Phosphorous Mono-ammonium and di-ammonium phosphate 13.10 

Potassium Potassium chloride 12.40 

Iron Iron ethylenediaminetetraacetic acid 0.15 

Copper Copper sulfate 0.07 

Zinc Zinc sulfate 0.06 

Manganese Manganese ethylenediaminetetraacetic acid 0.05 

Boron Boric acid 0.02 

Molybdate Sodium molybdate 0.00 
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At first square, plants were transferred to a growth cabinet (14 h photoperiod commencing 

at 0600 h, 32 ± 3 oC, 45 ± 15% relative humidity, maximum 800 µmol m-2 s-1 of 

photosynthetically active radiation (PAR) and 10 h dark period at 25 ± 5 oC and 85 ± 15% 

RH), running on a Maxim 510 controller (Innotech Trading Australia Pty Ltd, Forest 

Lake, QLD). Light intensity increased stepwise from the start of the photoperiod by 30 % 

each 30 min, to a steady maximum of 800 µmol PAR m-2 s-1. Likewise, light intensity 

decreased stepwise by 30% each 30 min to the end of the photoperiod. Relative humidity 

was allowed to follow external atmospheric conditions and hence was largely a function of 

temperature, with a daily average of 65 %. Carbon dioxide concentration similarly 

reflected atmospheric conditions with a daily average of approximately 360 µL/L. Plants 

were hand watered daily to maintain adequate soil moisture levels.  

3.4.2 Temperature treatments 

Plants were acclimated for 4 d at optimal conditions (32/25 oC day/night) in the growth 

cabinet before initiation of the temperature treatment. For the control (32 oC), cabinet 

conditions were left unchanged during the treatment period. Due to limited growth cabinet 

space, plants of a comparative physiological age were transferred to the controlled 

environment growth cabinet after the control plants had been removed. Well-watered 

plants were exposed to heat stress by increasing the ambient air temperature to 42 oC (67% 

RH) during the photoperiod and 25 oC (40 % RH) during the dark period. Photosynthesis, 

electron transport rate, stomatal conductance, transpiration rate, membrane stability, 

enzyme viability and gene expression were then determined for the third youngest fully 

expanded leaf of cultivars Sicot 53 and Sicala 45. Details for specific measurements or 

assays are described in the respective chapters.  
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Chapter 4 Screening for Cultivar Specific Thermotolerance at 

the Crop and Whole Plant Level 

4.1 Introduction 
In-season crop exposure to high temperature may adversely affect cotton yield. This may 

be due to limited assimilate availability for growth and hence a reduction in the 

development of potential fruiting sites. High temperatures throughout the flowering period 

may result in low fruit set due to pollen infertility (Burke 2004; Kakani et al. 2005; 

Marshall et al. 1974), low boll weight and seeds per boll (Pettigrew 2008) or high rates of 

fruit abscission (Reddy et al. 1999; Zhao et al. 2005) thereby limiting yield potential. Thus 

yield and yield component analysis may be used to screen for stress tolerance under field 

conditions.  

Plant breeding has traditionally focused on yield and yield components as parameters for 

species and cultivar selection for adaptation to local environments and management 

practices (Constable et al. 2001). However, the production of final harvestable yield and 

its components are the result of acclimation and exposure to biotic and abiotic factors 

affecting crop growth. While measuring yield does not enable cultivars to be evaluated for 

a specific tolerance, it still provides a description of the suitability of a particular genotype 

for economically viable, local production systems. 

Yield-based cultivar selection in hot seasons may not only provide selection pressure for 

high temperature tolerance but also tolerance to other biotic or abiotic stresses associated 

with high temperatures such as drought, radiation stress, plant pests or pathogens 

prevalent in hot dry seasons. Therefore, to ensure that particular tolerances are entrenched 

in a breeding program, strategies must be developed to identify, isolate and target 

germplasm with specific tolerances.  
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Variability between seasons and the interaction between germplasm and biotic and abiotic 

stress may limit the repeatability of identification of superior cotton cultivars, particularly 

for temperature tolerance.  

This chapter details a series of experiments, conducted to determine the effects of high 

temperature stress on yield, fruit retention and fibre quality and the suitability of using 

these measurements to determine cultivar-specific thermotolerance under field conditions. 

The aim of these experiments was to determine cultivar specific thermotolerance using 

crop and whole plant measurements for field grown plant material: 

(a) under ambient temperatures (experiment 1); and 

(b) under in-situ high temperature stress generated by tents (experiment 2)  

Specifically the hypothesis tested was that yield, fruit retention and fibre qualities are 

effective methods of screening for cultivar specific tolerance to high temperature stress.  

4.2 Materials and methods 

4.2.1 Site description 

Experiments 1 and 2 were conducted over three growing seasons at field sites located at 

The Australian Cotton Research Institute, Narrabri, Australia in 2006 (season 1) and 2007 

(season 3), and at The Texas Agriculture and Experiment Station, College Station, Texas, 

USA in 2006 (season 2). Details for each site and season are presented in Chapter 3.  

4.2.2 Treatments 

Experiment 1 

Cotton cultivars Sicot 53, Sicala 45, CSX 99209-376 and Sicala V-2 were established 

under field conditions in a randomised block design with four replicates. Plants were 

grown under ambient field conditions over three seasons under furrow irrigation and high 
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input management. No additional high temperature treatment was imposed on crops for 

experiment 1.  

Experiment 2 

Two cotton cultivars (Sicot 53 and Sicala 45) were grown in the field over three 

consecutive seasons in a randomised block design with four replicates. This experiment 

was conducted as a subset of experiment 1. High temperature stress was artificially 

imposed on field grown plants by the construction of Solarweave® tents over the crop 

canopy, 4 d post irrigation. Tents were removed from the field after a 7 d incubation 

period and transferred to a different section of the plot for further treatment. Tent 1 was 

assembled at during squaring. Tent 2 was assembled at approximately first flower. Yield 

data from the tents in season 2 were accidentally lost. 

4.2.3 Measurements 

For experiment 1, seed cotton yield was determined for cotton cultivars Sicot 53, CSX 

99209-376, Sicala 45 and Sicala V-2 grown under ambient field conditions in seasons 1 

(2006) and 3 (2007) in Narrabri and season 2 (2006) in Texas. For experiment 2, seed 

cotton yield, fruit retention, and fibre quality parameters; length, strength and micronaire 

were measured for cultivars Sicot 53 and Sicala 45 grown under ambient (control) or tent 

regimes in the field for seasons 1 (2006) and 2 (2007) in Narrabri.  

Plants were defoliated when 60% of bolls were open and subsequently harvested at 

maturity. Plants were excised below the cotyledons from a 1 m section of a single row, 

and at a distance of at least 2 m from the border of each plot to measure yield, fruit 

retention and fibre quality. For samples under ambient (control) field conditions, plants 

were sampled from at least one metre from the edge of the plot. Under the tents in 

experiment 2, plants were sampled from the middle of three rows under the tent, leaving a 
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one metre buffer area to all sides.  Plants were immediately transferred to the laboratory 

for processing.  

Fruit retention was calculated as the percentage of final open bolls to total fruiting sites on 

sympodial branches. Seed cotton from each open boll was removed for yield 

determination. A subsample was taken and ginned for lint quality. Lint was excised from 

the seed coat in a Continental Eagle 20-saw gin. Lint yield was calculated from ginned lint 

samples. Fibre length, strength and micronaire were determined for ginned lint samples 

using a high volume instrument (HVI).  

4.2.4 Data analysis 

Experiment 1 

One-way Analysis of Variance (ANOVA) was conducted for total seed cotton yield of 

cotton cultivars Sicot 53, CSX 99209-376, Sicala 45 and Sicala V-2, pooled across the 3 

seasons. Two-way ANOVA (cultivar*season) was conducted for total seed cotton yield of 

cultivars grown under ambient field conditions in season 1 (2006) and 3 (2007) in 

Narrabri and season 2 (2006) in Texas. One-way ANOVA was employed to determine 

cultivar specific differences in seed cotton yield for each individual season. 

Experiment 2 

One-way ANOVA was conducted for seed cotton yield, fruit retention and fibre quality 

parameters of cotton cultivars Sicot 53 and Sicala 45, pooled for seasons 1 (2006) and 3 

(2007) in Narrabri and pooled for the ambient (control) and high temperature (tent) 

treatment regimes. Two-way ANOVA (cultivar*tent) was conducted for seed cotton yield, 

fruit retention and fibre quality of cotton cultivars under ambient (control) and high 

temperature (tent) regimes in the field and pooled for seasons 1 (2006) and 3 (2007) in 

Narrabri. Two-way ANOVA (cultivar*tent) was conducted for seed cotton yield, fruit 
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retention and fibre quality parameters of cotton cultivars under ambient (control) and high 

temperature (tent) conditions in the field, pooled for each season  and data for each season 

were analysed independently. One-way ANOVA was conducted for seed cotton yield, 

fruit retention and fibre quality of cotton cultivars under ambient (control) field conditions 

or under the tents at an early (tent 1) or later (tent 2) growth stage.  

4.3 Results 

4.3.1 Experiment 1 

Yield for Australian cotton cultivars, pooled over 3 seasons 

Mean seed cotton yield of all four Australian cotton cultivars was higher (P<0.001) in 

seasons 1 and 3 compared with season 2. The cotton seed yield of Sicala V-2 plants was 

lower (P=0.026) than the other three cultivars when pooled over the 3 growing seasons 

(Figure 4-1). The seed cotton yield of Sicot 53, Sicala 45 and CSX 99209-376 did not 

differ. 

 

Figure 4-1 Mean seed cotton yield for (a) plants grown at the Narrabri field sites in seasons 1 (2006) 
and 3 (2007) and at the Texas field site in season 2 (2006) and (b) Australian cotton cultivars Sicot 53, 
Sicala 45, CSX 99209-376 and Sicala V-2, pooled over the three seasons. The vertical lines represent 
the l.s.d. for season or cultivar main effects at P<0.05. 

Cotton seed yield was analysed for the four Australian cotton cultivars for each season 

independently. For season 1, the seed cotton yield of CSX 99209-376 was higher 
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(P=0.044) than the seed cotton yield for Sicala 45 and Sicala V-2 (Table 4-1). For season 

2, the mean cotton seed yield was higher for Sicala 45 compared with Sicot 53 and mean 

seed cotton yield of Sicala V-2 plants was lower (P<0.001) than the other three cotton 

cultivars (Table 4-1). There were no cultivar differences for seed cotton yield in season 3 

(Table 4-1). 

Table 4-1 Seed cotton yield (g m-2) for cultivars Sicot 53, Sicala 45, CSX 99209-376 and Sicala V-2 
grown under ambient field conditions during season 1 (2006) and 3 (2007) in Narrabri and season 2 
(2006) in Texas, where n.s. represents F test P values that are not significant for P<0.05. Means 
followed by the same letter in the same row are not significantly different at P <0.05. 

Season Sicot 53 Sicala 45 CSX      

99209-376 

Sicala V-2 Grand 

Mean 

Max 

L.S.D.  

P value 

1 621 ab 550 b 684 a 536 b 598 109 0.044 

2 345 b 385 a 363 ab 268 c 340 35 <0.001 

3 547 550 586 529 553 - n.s. 

4.3.2 Experiment 2 

Yield, fruit retention and fibre quality response to heat stress, pooled over 2 seasons 

Yield, fruit retention and fibre quality parameters were determined for cotton cultivars 

Sicot 53 and Sicala 45, grown under either ambient (control) or tent (tent 1 and tent 2) 

regimes in the field for seasons 1 and 3. Results are summarised in Table 4-2. Although 

cultivar differences were determined for fruit retention, fibre strength and micronaire in 

season 1 and temperature treatment differences were found for fruit retention, seed cotton 

yield and fibre length in season 2, an interaction between cultivar and temperature 

treatment was only determined for fruit retention in season 1. 
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Table 4-2 Probability of cultivar and temperature treatment main effects and cultivar by temperature 
treatment interaction for yield, fruit retention an d fibre quality for seasons 1 (2006) and 3 (2007) in 
Narrabri, where n.s. represents F test P values where P>0.05. 

 Cultivar  Temperature treatment Cultivar * Temperature treatment  

Season 1 

Seed cotton yield  n.s. <0.001 n.s. 

Fruit retention  0.002 <0.001 <0.001 

Fibre length  n.s. 0.012 n.s. 

Fibre strength  0.007 n.s. n.s. 

Micronaire 0.045 n.s. n.s. 

Season 3 

Seed cotton yield  n.s. 0.027 n.s. 

Fruit retention  n.s. 0.022 n.s. 

Fibre length  n.s. 0.049 n.s. 

Fibre strength  n.s. n.s. n.s. 

Micronaire n.s. n.s. n.s. 

Yield  

The mean seed cotton yield of plants grown under tents were lower than plants grown 

under ambient (control) conditions for tent 1 in season 1 (P<0.001) and in tent 2 in season 

3 (P=0.026) (Figure 4-2). There were no cultivar differences for yield in seasons 1 or 3.  
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Figure 4-2 Mean seed cotton yield of cotton cultivars Sicot 53 and Sicala 45 under ambient (control) 
and under the tents at an early (tent 1) or later (tent 2) growth stage in (a) season 1 (2006) and (b) 
season 3 (2007) at Narrabri. The vertical lines indicate the l.s.d. value at P<0.05 for temperature 
treatment main effect. 
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Fruit retention 

Overall fruit retention was lower (P<0.001) for season 1 than season 3 (Figure 4-3). For 

season 1, there was an interaction (P<0.001) between cultivar and treatment for fruit 

retention (Table 4-2). Under ambient (control) conditions in the field, fruit retention for 

Sicot 53 was higher than Sicala 45. There was no difference in fruit retention between the 

two cultivars under the tents. For season 1, fruit retention was lower for plants grown 

under tent 1 compared with tent 2 and under ambient (control) conditions in the field 

(Figure 4-3). For season 3 fruit retention under tent 2 was lower (P=0.026) than the fruit 

retention for plants growing under ambient (control) field conditions.  
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Figure 4-3 Fruit retention (%) of cotton cultivars Sicot 53 and Sicala 45 under ambient (control) and 
under the tents (tent 1 and tent 2) during (a) season 1 (2006) and (b) season 3 (2007) at Narrabri. The 
(a) vertical line represents the l.s.d. for temperature treatment by cultivar interaction at P<0.05. 
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A positive correlation (P<0.0001) existed between fruit retention and seed cotton yield 

under field conditions in season 1 (Figure 4-4) and accounted for up to 47 % of the 

variation (Table 4-3). In season 3, there was no correlation (P>0.05) between fruit 

retention and seed cotton yield (Figure 4-4). 

Table 4-3 Correlation between fruit retention (%) and seed cotton yield (g m-2) under ambient 
(control) and tent regimes in the field in season 1 (2006) and 3 (2007) in Narrabri where n.s. 
represents F test P values where P<0.05. 

Season n Adjusted  

R2 

Equation P value 

1 24 0.47 y=132.31+15.83*x <0.001 

3 24 - - n.s. 
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Figure 4-4 Correlation between fruit retention (%) and seed cotton yield (g m-2) for cotton cultivars 
Sicot 53 and Sicala 45 grown under ambient and tent regimes in the field in (a) season 1 (2006) and (b) 
season 3 (2007) at Narrabri, replicated 4 times.   

Fibre quality 

Fibre length was lower (P=0.012) for plants grown under tents 1 and 2 compared with 

plants grown under ambient (control) field conditions in season 1 (Figure 4-5). For season 

3, fibre length was lower (P=0.019) for plants grown under tent 1 compared with plants 
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grown under tent 2 and plants grown under ambient (control) field conditions (Figure 4-5). 

There were no cultivar differences for fibre length.  
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Figure 4-5 Mean fibre length (decimal inch) of plants grown under ambient (control) and under the 
tents (tent 1 and tent 2), grown during (a) season 1 (2006) and (b) season 3 (2007) at Narrabri. The 
vertical lines represent the l.s.d. for temperature treatment main effects at P<0.05. The upper line 
represents the ideal target for fibre length (1.125 inch). The lower line represents the minimum target 
for fibre length (1.031 inch) under which, significant financial penalties are incurred. 
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Fibre strength in season 1 was lower (P<0.001) than in season 3 (Figure 4-6). Fibre 

strength under ambient (control) conditions was higher (P=0.007) than under high 

temperature (tent) conditions during season 1 (Figure 4-6). There was no difference 

(P>0.05) in fibre strength under ambient (control) or under the tents during season 3. 

There were no cultivar differences (P>0.05) for fibre strength in seasons 1 or 3. The 

micronaire of cotton cultivars Sicot 53 and Sicala 45 did not differ under the tents 

compared with ambient (control) field conditions.   
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Figure 4-6 Mean fibre strength (g tex-1) of Sicot 53 and Sicala 45 under ambient (control) and high 
temperature (tent 1 and tent 2) conditions during (a) season 1 (2006) and (b) season 3 (2007) at 
Narrabri. The vertical line represents the l.s.d. for temperature treatment main effects at P<0.05. The 
upper dashed line represents the industry target for fibre strength (29 g tex-1) above which, small 
premiums are obtained for superior fibre quality. The lower dashed line represents the industry 
minimum for fibre strength (27 g tex-1) under which discounts are incurred for sub-standard fibre 
quality. 

4.4 Discussion 
Yield has been traditionally employed by plant breeders as a primary screening parameter 

for determining the adaptability of cotton cultivars to local production systems (Constable 

et al. 2001). Yield evaluation of four cotton cultivars over three consecutive growing 

seasons showed that Sicala V-2 was consistently lower yielding than Sicot 53, Sicala 45 
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and CSX 99209-376. This cultivar discrimination indicates that that evaluation of yield 

and fruit retention under ambient field conditions provides a discriminatory mechanism 

for identification of cultivar specific adaptability to local conditions and higher yield 

potential thus validating traditional thinking in conventional plant breeding.  

However, yield-based selection under favourable conditions may eventuate in the 

selection of genotypes that perform well under ambient conditions but fail to perform 

under stress conditions (Lopez et al. 2003b).  Furthermore, due to the complex nature of 

yield and a multitude of selection pressures for yield across the growing season (Watson 

1952), the exact mechanism for cultivar-specific yield differentiation cannot be concluded 

to be heat stress from this set of experiments. Hence, Solarweave® tents were employed to 

determine if temperature could be a primary determinant of cotton yield.  

Seed cotton yield and fruit retention were lower for Sicot 53 and Sicala 45 under tent 1 in 

season 1 and tent 2 in season 3, compared with plants grown under ambient (control) 

conditions. This indicates that exposure of plants to temperatures exceeding 45 oC for at 

least 6 h under the tents (Table 3-6) provided sufficient exposure to abiotic stress to illicit 

a stress response and subsequent decreases in yield and fruit retention. Decreased yield 

and fruit retention under the tents on only one of two instances in both seasons 1 and 3 

may be attributed to a high thermal sensitivity at the squaring and flowering 

developmental stages and exacerbated by environmental conditions at the time of tent 

installation.  

Fruit retention is most likely the main factor associated with lower yields under the tents 

in a hot season; this agrees with previous research showing fruit shedding under high 

temperature stress (Reddy et al. 1999; Reddy et al. 1992; Zhao et al. 2005), and 

specifically for plants grown under tents (Dhopte and Eastin 1988; Lopez et al. 2003a). 
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Decreased yield may also be partially attributed to pollen infertility (Burke 2004; Kakani 

et al. 2005) or low boll weight and seeds per boll (Pettigrew 2008). Differences in plant 

physiological capacity under ambient (control) conditions may be exacerbated by inherent 

climatic differences between the Narrabri and Texas field sites, and physiological process 

under ambient and tent regimes in the field are potentially influenced by seasonal weather 

differences between seasons 1 and 3 at the Narrabri field site. 

Cultivar rankings for yield varied between field sites and seasons. Previous reports for 

yield under tents are for a single season (Dhopte and Eastin 1988; Lopez et al. 2003a) 

thereby not accounting for seasonal influences on cultivar performance. Plants grown at 

the Texas site (season 2) were exposed to high average daily temperatures but a fewer 

number of days with temperatures exceeding the high temperature threshold for cotton (35 

oC). Plants grown at Narrabri (seasons 1 and 3) were typically exposed to a lower average 

temperature but a higher number of days exceeding the high temperature threshold for 

cotton (35 oC) (Table 3-4). Hence it not surprising that the Australian-developed cultivars 

Sicot 53, Sicala 45, Sicala V-2 and CSX 99209-376 yielded highest in a mild season 

(Season 3) at the Narrabri field site; conditions for which they were specifically bred. The 

seasonal nature of yield indicates that screening for thermotolerance using yield both 

under ambient (control) conditions and under the tents is largely dependent on climate and 

in-season weather patterns and hence, requires sufficient replication in a local environment 

for the development of a reliable cultivar-specific heat tolerance index. 

Fibre length and strength were reduced under the tents compared with plants grown under 

ambient (control) conditions. This is consistent with previous studies (Pettigrew 2008; 

Reddy et al. 1999) showing that exposure to high temperature stress limits fibre 

elongation and may ultimately have a deleterious effect on fibre quality. However, both 
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Sicot 53 and Sicala 45 plants still exceeded the minimum and recommended industry 

targets for all fibre quality parameters. Although fibre length and strength are not useful 

indicators of genotypic stress tolerance, these parameters need to be monitored during 

breeding programs to ensure that breeding for heat tolerance does not inadvertently reduce 

fibre quality.  

4.5 Conclusion 
Yield is an excellent predictor of overall plant functionality within a season and hence, is a 

useful selection tool for plant breeders, whilst also providing an industry recognised 

parameter and target for breeding improvement. Yield is also readily translatable to actual 

farming systems and hence is an important output parameter for any plant breeding 

program.  

Quantification of yield, fruit retention and fibre quality under the tents provided little 

evidence for thermotolerance discrimination between Sicot 53 and Sicala 45 for 

thermotolerance. These results suggest that the mechanisms underlying yield in the field 

are a complex network of physiological changes involved with heat tolerance and heat 

avoidance. Heat tolerant plants may be better candidates for screening programs as heat 

avoidant plants are generally reliant on higher inputs such as water to maintain 

homeostasis under high temperature stress. Plant physiological, biochemical and 

molecular screening techniques should be concurrently investigated to provide an 

understanding of cultivar specific heat tolerance under field conditions and the genetic 

basis of thermotolerance in cotton cultivars. Furthermore, inclusion of a greater diversity 

of germplasm and a larger number of samples may aid in accounting for large biological 

variability in stress tolerance screening, thereby increasing the effectiveness of yield-

based, in-field screening programs.  
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Chapter 5 Screening for Cultivar Specific Thermotolerance at the 

Leaf Level 

5.1 Introduction 
Temperature influences the growth and development of crops. It is a primary factor 

determining sowing date, seasonal development and harvest date.  Cotton has an optimal 

thermal window of 23 to 32 oC in which metabolic activity is most efficient (Burke et al. 

1988). Maximum daily temperatures exceeding 32 oC are common in many cotton growing 

regions and may limit growth, development and ultimately crop yield.  Effects of high 

temperature stress include decreased plant growth, delayed development and increased fruit 

shedding (Hodges et al. 1993). This may be attributed to photosynthetic decline under high 

temperature stress (Reddy et al. 1991a), particularly attributed to decreased electron flow 

through the photosystem (Wise et al. 2004) through membrane disruption (Sullivan 1971) 

and decreased stability of photosynthetic (Salvucci and Crafts-Brandner 2004b) and 

respiratory enzymes (de Ronde and van der Mescht 1997). 

Changes in plant physiological function under high temperature stress may be useful to 

identify heat tolerant genotypes for inclusion in future breeding programs (Constable et al. 

2001) for production in the warmer cotton growing regions of the world. Point-in-time 

(survey) measurements for photosynthesis, electron transport rate, stomatal conductance and 

transpiration are established methods of screening for high and low temperature tolerance in 

cotton under greenhouse conditions (Bibi et al. 2004b; Brown and Oosterhuis 2004; 

McDowell et al. 2007) and for drought stress (Kitao and Lei 2007; Leidi et al. 1993) and 

waterlogging tolerance (Conaty et al. 2008) screening studies in the field. However, plant 

specific responses to high temperature stress may differ under greenhouse and field 

conditions due to additional environmental stress in the field (Watson 1952).  
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In-field high temperature stress has been achieved by staggering planting date (Rahman 

2005), ambient temperature-dependent sampling (Bibi et al. 2004a) and the use of 

polyethylene shelters (Lopez et al. 2003a) for drought stress studies. Few studies evaluating 

heat tolerance under field conditions have been reported, primarily attributed to the difficulty 

in distinguishing between water stress tolerance and high temperature tolerance. Field studies 

are furthermore confounded by acclimation to high temperature stress in hot growing 

seasons.  

This chapter examines the effectiveness of measuring rates of leaf gas exchange and 

chlorophyll fluorescence under high temperature stress to screen for cultivar specific 

thermotolerance both under field and glasshouse conditions. The aim of these experiments 

was to determine genotype specific thermotolerance of cotton cultivars Sicot 53 and Sicala 45 

using gas exchange and fluorescence measurements for; 

(a) field grown plant material under ambient (control) or high (tent) temperatures 

(Experiment 1), and correlate these measurements with yield; and 

(b) growth-cabinet grown plant material under optimal (32 oC) or high (42 oC) 

temperature regimes by evaluation of light response curves [400, 800, 1200, 1600, 

2000 µmol PAR m-2 s-1] (Experiment 2)   

Specifically the hypothesis tested was that genotypic differences in heat tolerance can be 

quantified by measuring photosynthesis, electron transport rate, stomatal conductance and 

transpiration rate.  

5.2 Materials and methods 

5.2.1 Site description 

Experiment 1 was conducted over three growing seasons at two field sites. Seasons 1 (2006) 

and 3 (2007) were conducted at the Australian Cotton Research Institute, Narrabri. Season 2 
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(2006) was conducted at The Texas Agriculture and Experiment Station, Texas (Table 5-1). 

Experiment 2 was conducted at the Australian Cotton Research Institute, Narrabri. Plants 

were initially established in a glasshouse and then transferred to a growth cabinet. Details of 

each experiment are presented in Figure 5-1. 

Table 5-1 Location and timing of experiments 1 and 2  

Experiment Site Season Year Location 

1 Field 1 2006 Narrabri 

1 Field 2 2006 Texas 

1 Field 3 2007 Narrabri 

2 Growth cabinet - 2007 Narrabri 

5.2.2 Treatments 

Experiment 1  

Cotton cultivars Sicot 53 and Sicala 45 were grown under ambient (control) field conditions 

in a randomised block design with four replicates. The photosynthetic rate, electron transport 

rate, stomatal conductance and transpiration rate of the two cultivars was measured on 

various days under ambient (control) field conditions and also under the tents (Table 5-2).  

Experiment 2 

Plants of cotton cultivars Sicot 53 and Sicala 45 were established under glasshouse conditions 

in a completely randomised design with four plants per treatment and transferred to a growth 

cabinet at first square. Photosynthesis, electron transport rate, stomatal conductance and 

transpiration were measured under optimal (32 oC) and high temperature (42 oC) conditions 

in the growth cabinet at 1230 h and daily for a 3 d period. Measurements were taken at 

various light intensities (200, 400, 600, 800, 1000, 1200 µmol PAR m-2 s-1) by 

implementation of a step-wise incremental light intensity auto-program for an internal light 

source in the sensor head of a Li-6400 portable photosynthesis system. 
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5.2.3 Measurements 

Gas exchange & fluorescence 

Measurements of photosynthesis, electron transport rate, stomatal conductance and 

transpiration were made using a Li-6400 portable photosynthesis system (Li-Cor Ltd, 

Lincoln, NE, USA), with a pulse-amplitude modulated (PAM) leaf chamber fluorometer 

sensor head. Environmental variables were highly controlled in the sensor head for effective 

comparison between samples and were set to approximately ambient external conditions for 

the day of sampling. The reference carbon dioxide concentration was set at 400 µmol CO2 

mol-1 using a CO2 mixer.  Relative humidity followed ambient conditions. The system flow 

rate was adjusted to maintain a vapour pressure deficit between 1.5 and 2.5 kPa. Light 

adapted fluorescence was measured using the fluorometer attachment, immediately following 

the photosynthesis measurement.  

Experiment 1 

Gas exchange and fluorescence were determined on multiple days throughout the season 

(Table 5-2). Initial photosynthetic rates and chlorophyll fluorescence were measured at 

ambient field conditions (Day 0). The tents were then erected and left over the crop canopy 

for a defined number of days (ranging from 2 to 5 d) whilst measurements were taken (Table 

5-2). The tents were removed and a recovery measurement was taken two days later. The 

timing of tent construction and removal was dependent on irrigation cycles, rain events and 

availability of resources and therefore differed slightly between experiments. This treatment 

was repeated twice in seasons 1 (2006) and 3 (2007) in Narrabri. All measurements were 

taken between the developmental stages of pinhead square and cut-out. The physiological 

parameters were analysed for each day before, during and after tent installation to account for 

daily climatic variation and incremental exposure to high temperature stress under the tents. 

Single measurements were taken for 3 different plants per replicate over 4 replicates. All 
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measurements were taken between 1000 and 1230 h (Eastern Summer Time – Australia). 

Light intensity of the Li-6400 was set at 2000 µmol m-2 s-1. The leaf chamber block 

temperature was maintained at 30 oC as it is considered within the optimal temperature range 

for photosynthesis (cf. Burke et al. 1988; Wise et al. 2004).  

Table 5-2 Measurement dates for photosynthetic rate, electron transport rate, stomatal conductance and 
transpiration rate of cotton cultivars Sicot 53 and Sicala 45, grown under ambient (control) and tent 
regimes in the field in seasons 1 (2006) and 3 (2007) in Narrabri and season 2 (2006) in Texas. 

Season Tent 

number 

Initial (Day 0) 

measurement 

1st time of 

measurement 

2nd time of 

measurement 

Recovery 

measurement 

1 1 3-Feb-06 5-Feb-06 9-Feb-06 11-Feb-06 

1 2 23-Feb-06 25-Feb-06 6-Mar-06 - 

2 1 13-Jul-06 15-Jul-06 19-Jul-06 21-Jul-06 

3 1 17-Dec-06 20-Dec-06 22-Dec-06 15-Jan-07 

3 2 16-Jan-07 18-Jan-07 20-Jan-07 - 

Experiment 2 

Gas exchange and fluorescence measurements were taken on the third youngest fully 

expanded leaf of 4 plants per treatment. Measurements were taken between 1000 h (4 h into 

the photoperiod) and 1400 h for 7 d. Measurements for gas exchange and fluorescence were 

taken at increasing light intensities at 200, 400, 600, 800, 1000 and 1200 µmol m-2 s-1 PAR 

by implementation of a step-wise incremental light intensity auto-program for the internal 

light source on the Li-6400 portable photosynthesis system. The leaf chamber block 

temperature of the Li-6400 was set to 32 oC in the optimal growth cabinet and 42 oC in the 

high temperature growth cabinet. Leaf temperature measurements were taken using a Mikron 

M100 series portable infrared thermometer. 

5.2.4 Data analysis 

Experiment 1 

Two-way Analysis of Variance (ANOVA) (cultivar*temperature) was conducted for 

photosynthesis, electron transport rate, stomatal conductance and transpiration of cultivars 
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Sicot 53 and Sicala 45 under ambient (control) conditions and under the tents in the field and 

pooled for all 3 seasons.  

An index of these 4 physiological parameters was then created by analysing the principal 

components (Manly 2005) using multivariate analysis (Genstat, 10th edition). The 

development of a single index for plant physiological function under abiotic stress may be 

more beneficial than analysis of single physiological measurements in isolation. Data from all 

3 seasons was combined for this analysis.    

Two-way ANOVA (cultivar*temperature) was conducted for photosynthesis, electron 

transport rate, stomatal conductance and transpiration rate of cultivars Sicot 53 and Sicala 45 

under ambient (control) and tent regimes in the field independently for seasons 1 (2006) and 

3 (2007) in Narrabri and season 2 (2006) in Texas.  

A linear regression was fitted to determine whether changes in stomatal conductance could 

predict photosynthesis under high temperature stress in the field. Analysis was run for Sicot 

53 and Sicala 45 plants grown under ambient (control) conditions or under the tents for 

seasons 1, 2 and 3 separately. 

Two-way ANOVA (cultivar*temperature) was conducted for gas exchange and fluorescence 

of cultivars Sicot 53 and Sicala 45, grown under ambient (control) and tent regimes in the 

field, where an independent ANOVA was conducted for each individual day under the tents. 

A linear regression was fitted to correlate photosynthesis, electron transport rate, stomatal 

conductance, transpiration, principal component 1 and principal component 2 with seed 

cotton yield under ambient or tent regimes in the field. Analysis was run for Sicot 53 and 

Sicala 45 plants grown under ambient (control) conditions or under the tents for combined 

data from seasons 1 (2006) and 3 (2007) in Narrabri. Season 2 (2006) was excluded from the 
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analysis as seed cotton yield data from under the tents was misplaced. The means for each 

season, temperature treatment and cultivar were represented graphically. 

Experiment 2 

Waiting-in-line curve fit for light response curve 

Electron transport rate and photosynthesis were plotted against irradiance (200, 400, 800, 

1200, 1600, 2000 µmol PAR m-2 s-1) and a waiting-in-line curve (Ritchie 2008) was fitted to 

the data for cotton cultivars Sicot 53 and Sicala 45 grown under optimal and high temperature 

regimes in the growth cabinet (Equation 5-1). 

y=A*k*E*e-kE (Equation 5-1) 

 

Where y = photosynthesis measured as electron transport rate, A = maximum ETR as 

irradiance approaches infinity, k = irradiance at ½ A and E = irradiance. 

The photosynthetic efficiency (α0), optimal irradiance for electron transport (optimum E) or 

maximum photosynthesis (Pmax) was determined for each cultivar and each temperature 

treatment. Data were loge transformed to account for increasing variance with increasing 

irradiance; however, this did not improve the fit of the curve and hence all data presented 

were on an untransformed basis.  

A linear regression was fitted to determine whether stomatal conductance or transpiration rate 

changed with exposure to step-wise increases in irradiance. Analysis was run for cultivars 

Sicot 53 and Sicala 45 grown under optimal (32 oC) or high (42 oC) temperature regimes in 

the growth cabinet. Data presented is the mean of 4 replicates. 

REML 

A linear mixed model (REML) was fitted for photosynthesis, electron transport, stomatal 

conductance and transpiration rate of cultivars Sicot 53 and Sicala 45 at various rates of 
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irradiance (200, 400, 800, 1200, 1600, 2000 µmol PAR m-2 s-1) under optimal (32 oC) and 

high (42 oC) temperatures in the growth cabinet. Cultivar, growth cabinet temperature and 

irradiance were analysed for main effects and interactions (cultivar*cabinet 

temperature*irradiance). The REML was run using Genstat 10.0 and was used in preferences 

to ANOVA as the design of this experiment was unbalanced.  

A linear mixed model was also fitted for leaf temperature of cultivars Sicot 53 and Sicala 45 

under optimal (32 oC) and high (42 oC) temperatures in the growth cabinet. Cultivar and 

growth cabinet temperature were analysed for main effects and interactions (cabinet 

temperature*cultivar). The REML was run using Genstat 10.0 in preference to ANOVA to 

include a random model incorporating day of measurement and replicate number 

(day*replicate). 

5.3 Results 

5.3.1 Experiment 1 

Physiological response to heat stress, pooled over 3 seasons 

The photosynthetic rate, electron transport rate, stomatal conductance and transpiration rate 

of Sicot 53 and Sicala 45 were measured under ambient (control) and tent regimes in the field 

and pooled for seasons 1, 2 and 3.  All four physiological parameters were influenced by the 

imposition of the tents (Table 5-3). Although there were no cultivar effects evident for ETR, 

stomatal conductance or transpiration, an interaction was found between cultivar and 

temperature treatment for photosynthesis (Table 5-3).  
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Table 5-3 Probability of cultivar and temperature treatment (control, tents) main effects and cultivar by 
temperature treatment interaction for photosynthesis, electron transport rate, stomatal conductance and 
transpiration rate  for cotton cultivars Sicot 53 and Sicala 45 grown under ambient (control) conditions 
and under the tents during seasons 1 (2006) and 3 (2007) at Narrabri and in and season 2 (2006) in Texas,  
where n.s. represents F test P values where P<0.05.  

Measurement Cultivar Temperature treatment Cultivar * Temperature treatment 

Photosynthesis n.s. 0.041 0.043 

Electron transport rate n.s. <0.001 n.s. 

Stomatal conductance n.s. <0.001 n.s. 

Transpiration rate n.s. <0.001 n.s. 

The photosynthetic rate of Sicala 45 was higher (P=0.043) (Table 5-3) under ambient 

(control) conditions but lower under the tents compared with Sicala 53 (Figure 5-1). The 

electron transport rate was lower (P<0.001) (Table 5-3) under the tents (Figure 5-2), whilst 

the stomatal conductance and transpiration rate were higher (P<0.001) (Table 5-3) under the 

tents compared with ambient (control) conditions (Figure 5-2), but these differences were not 

cultivar specific.  
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Figure 5-1 Mean photosynthetic rate for Sicot 53 and Sicala 45 plants grown under ambient (control) and 
tent regimes in the field and pooled for seasons 1 (2006) and 3 (2007) at Narrabri and season 2 (2006) in 
Texas. The (a) vertical line indicates the l.s.d. value for temperature treatment by cultivar interaction at 
P=0.05. 
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Figure 5-2 Mean (a) electron transport rate, (b) stomatal conductance and (c) transpiration rate for Sicot 
53 and Sicala 45 plants grown under ambient (control) and tent regimes in the field and pooled for 
seasons 1 (2006) and 3 (2007) at Narrabri and season 2 (2006) in Texas. The (a) vertical line indicates the 
l.s.d. value for temperature treatment main effects at P=0.05. 
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A plant physiological capacity index was created by provide a simple index of physiological 

capacity under high temperature stress in the field. The eigenvalue for a principal component 

indicates the variance it accounts for out of a total of 4. The first (PC1) and second (PC2) 

principal components were considered for this analysis as they were the only components 

with an eigenvalue greater than 1 (Manly 2005) and accounted for 87 % of the variation. 

Eigenvalues were correlated for physiological indicators for carbon assimilation and heat 

dissipation (Figure 5-3). Photosynthesis and electron transport rate were closely correlated 

and had an inverse relationship to stomatal conductance and transpiration (Figure 5-3). 
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Figure 5-3 Mean correlation between eigenvalue for principal component 1 and eigenvalue for principal 
component 2 for photosynthesis, electron transport rate, stomatal conductance and transpiration. Means 
represent pooled averages for cultivars Sicot 53 and Sicala 45, grown under both ambient (control) and 
high temperature (tent) regimes in the field during season 1 (2006) and season 3 (2007) at the Narrabri 
and season 2 (2006) at the Texas field sites. 
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The first principal component accounted for 49 % of the variation (eigenvalue = 1.960) and 

was determined by the following index: 

��� � 0.352
� � 0.270

 � 0.637
� � 0.631
� 

Where X1 is photosynthetic rate; X2 is electron transport rate; X3 is stomatal conductance and 

X4 is transpiration rate. Photosynthesis and electron transport rate were high under ambient 

conditions and low under the tents. In contrast, stomatal conductance and transpiration were 

low under ambient conditions and high under the tents. As a result, PC1 was high when 

photosynthesis and electron transport were high and low when stomatal conductance and 

transpiration rate were low (Figure 5-4). Hence PC1 is an overall photosynthesis-conductance 

efficiency index under a treatment.  
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Figure 5-4 Principal component 1 for plants grown under ambient (control) and high temperature (tent) 
regimes in the field. Data are pooled for cotton cultivars Sicot 53 and Sicala 45 and also for seasons 1 
(2006) and 3 (2007) in Narrabri and season 2 (2006) in Texas. The vertical line represents the l.s.d. for 
temperature treatment main effects at the 95% confidence interval. 
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The second principal component (PC2) accounted for 38 % of the variation (eigenvalue = 

1.524) and is described by the following index: 

��
 � �0.607
� � 0.663

 � 0.301
� � 0.318
� 

where X1 is photosynthetic rate; X2 is electron transport rate; X3 is stomatal conductance and 

X4 is transpiration rate. Analysis of variance for PC2 indicated that the PC2 of Sicala 45 was 

slightly lower (P=0.054) than the PC2 of Sicot 53 (Figure 5-5).  
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Figure 5-5 Principal component 2 for Sicot 53 and Sicala 45 plants. Data are pooled for plants measured 
under ambient (control) and high temperature (tent) regimes in the field and also for seasons 1 (2006) and 
3 (2007) in Narrabri and season 2 (2006) in Texas. The vertical line represents the l.s.d. for cultivar main 
effects at the 95% confidence interval. 

When PC1 and PC2 were plotted, the majority of control plots had a high PC1, whilst the 

majority of tent plots had a low PC1 (Figure 5-6). PC1 of the control field regimes was higher 

(P<0.001) than that of the tent regime (Figure 5-5). There were no differences between 

seasons (P>0.05). 
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Figure 5-6 Plot of ambient (control) and high temperature (tent) regimes in the field for principal 
component 1 and principal component 2.  Data are presented for cotton cultivars Sicot 53 and Sicala 45 
and for season 1 (2006) and 3 (2007) in Narrabri and season 2 (2006) in Texas. 

Physiological response to heat stress, analysed separately for each season 

The photosynthetic rate of cultivars Sicot 53 and Sicala 45 grown under ambient (control) 

and tent conditions in the field was higher (P<0.001) in season 3 compared with seasons 1 

and 2, whilst electron transport rate was higher (P<0.001) for seasons 2 and 3 (Table 5-4). 

The stomatal conductance and transpiration rate was highest (P<0.001) in season 2 and 

lowest in season 1 (Table 5-4).  
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Table 5-4 Means and F test P values for photosynthesis, electron transport rate, stomatal conductance 
and transpiration rate, pooled for cotton cultivars Sicot 53 and Sicala 45 grown under ambient (control) 
and tent conditions in the field for seasons 1 (2006) and 3 (2007) at Narrabri and season 2 (2006) in Texas. 
Means followed by the same letter in the same row are not significantly at P=0.05. 

Measurement Season 1 Season 2 Season 3 Grand 

mean 

Max LSD P value 

Photosynthesis  

(µmol CO2 m
-2 s-1) 

30.8 a 24.7 b 33.8 c 31.2 1.4 <0.001 

Electron transport rate 

(µmol e-1 m-2 s-1) 

182a 243b 255 b 238 14 <0.001 

Stomatal conductance 

(mol H2O m-2 s-1) 

0.33 a 1.02 b 0.82 c 0.69 0.05 <0.001 

Transpiration rate  

(mmol H2O m-2 s-1) 

5.3 a 15.7 b 12.1 c 10.4 0.5 <0.001 

A summary of main effects and interactions for gas exchange and fluorescence for season 1 

(2006) and 3 (2007) in Narrabri and season 2 (2006) in Texas are presented in Table 5-5. 
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Table 5-5 Probability of cultivar and temperature treatment main effects and cultivar by treatment 
interaction for photosynthesis, electron transport rate, stomatal conductance and transpiration rate for 
individual seasons 1 (2006) and 3 (2007) in Narrabri and season 2 (2006) in Texas where n.s. represents F 
test P values that are not significant at P=0.05. 

Measurement Cultivar Temperature treatment Cultivar* temperature 

treatment 

Season 1    

Photosynthesis  n.s. n.s. 0.033 

Electron transport rate n.s. <0.001 n.s. 

Stomatal conductance n.s. <0.001 n.s. 

Transpiration n.s. <0.001 n.s. 

Season 2    

Photosynthesis n.s. <0.001 0.040 

Electron transport rate n.s. <0.001 n.s. 

Stomatal conductance 0.036 <0.001 n.s. 

Transpiration 0.002 <0.001 0.028 

Season 3    

Photosynthesis <0.001 n.s. 0.033 

Electron transport rate <0.001 <0.001 0.031 

Stomatal conductance n.s. <0.001 n.s. 

Transpiration n.s. <0.001 n.s. 

Photosynthesis 

The photosynthetic rate of Sicot 53 was lower than Sicot 45 under ambient (control) 

conditions in all 3 seasons (Figure 5-7). However, the photosynthetic rate of Sicot 53 was 

higher than Sicala 45 (Figure 5-7) under the tents in seasons 1 and 2. For season 3, the 

photosynthetic rate of Sicala 45 was higher (P=0.033) under the tents compared with Sicot 53 

and compared with both cultivars under ambient (control) conditions (Figure 5-7).  
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Figure 5-7 Mean (a, b, c) photosynthesis (µmol CO2 m
-2 s-1) and (d, e, f) electron transport rate (µmol e-1 

m-2 s-1)  of cotton cultivars Sicot 53 and Sicala 45 under ambient (control) tent (pooled for tent 1 and tent 
2) field conditions during (a, d) seasons 1 (2006) and (c, f) season 3 (2007) at Narrabri and (b, e) season 
(2006)  in Texas. The vertical lines in (a), (b), (c) and (f) represent the l.s.d. for temperature treatment by 
cultivar interaction at P=0.05. 

Electron transport rate 

The electron transport rate of plants grown under high temperature (tent) regimes was lower 

than under ambient (control) conditions for both seasons 1 and 2 (P<0.001). For season 3, the 

mean electron transport rate of Sicot 53 was lower under the tents compared with ambient 

(control) field conditions. There were no differences for electron transport rate of Sicala 45 

plants under the tents compared with under control conditions (Figure 5-7).  
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Stomatal conductance and transpiration rate 

Mean stomatal conductance and transpiration rate showed the same trends for season 1, 2 and 

3. Mean stomatal conductance (Figure 5-8) and transpiration (data not presented) were higher 

under the high temperature (tent) regime compared with under ambient (control) conditions 

in the field for all seasons (P<0.001). The rate of stomatal conductance (P=0.036) and 

transpiration (P=0.002) were higher for Sicala 45 than Sicot 53 in season 2. There were no 

cultivar differences (P>0.05) in stomatal conductance (Figure 5-8) or transpiration in either 

season 1 or 3. 
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Figure 5-8 Mean stomatal conductance (µmol H2O m-2 s-1) under (a, b, c) ambient (control) and high 
temperature (tent) conditions, and for (d, e, f) cotton cultivars Sicot 53 and Sicala 45 in the field in (a, d) 
season 1 (2006) and (c, f) season 3 (2007) at the Narrabri field site and (b, e) season 3 (2006) at the Texas 
field site. The data presented in (a), (b) and (c) are temperature treatment main effect means and (d), (e) 
and (f) are cultivar main effect means. The vertical lines in (a), (b) and (c) indicate an l.s.d. value at 
P=0.05 for temperature treatment main effects and in (e), indicate l.s.d. values at P=0.05 for cultivar 
means.  
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A positive correlation exists between stomatal conductance and photosynthesis under ambient 

(control) conditions in all seasons, suggesting that conductance was not limiting to carbon 

assimilation (Table 5-6, Figure 5-9). A negative correlation between stomatal conductance 

and photosynthesis was found under the high temperature (tent) treatment in season 2 (Table 

5-6, Figure 5-9). There was no relationship between stomatal conductance and photosynthesis 

under the tents in seasons 1 or 3 (Figure 5-9). 

Table 5-6 Correlation between stomatal conductance and photosynthesis under ambient (control) and 
high temperature (tent) regimes in the field in season 1 (2006) and 3 (2007) in Narrabri and season 2 
(2006) in Texas, where n.s. represents F test P values where P<0.05. 

Season Temperature 

treatment 

n Adjusted R2 Equation F test P value 

1 Control 134 0.08 y=24.82+25.16x <0.001 

2 Control 72 0.21 y=18.14+10.07x <0.001 

3 Control 360 0.35 y=23.90+13.90x <0.001 

1 Tent 134 n.s. n.s. n.s. 

2 Tent 72 0.47 y=44.70-20.604x <0.001 

3 Tent 360 n.s. n.s. n.s. 
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Figure 5-9 Relationship between stomatal conductance and photosynthesis for cotton cultivars Sicot 53 
and Sicala 45 grown under (a, b, c) ambient (control) and (d, e, f) high temperature (tent) regimes in (a, 
d) season 1 (2006) and (c, f) season 3 (2007) at Narrabri and (b, e) season 2 (2006) at the Texas field site. 

Physiological response to heat stress, analysed separately for each tent 

A summary of main effects and interactions for gas exchange and fluorescence for each day 

under the tent or under ambient (control) regimes in the field for tent 1 in seasons 1 and 2 is 

presented in Table 5-7. Times at which significant cultivar differences were not determined 

under the tents were excluded from presentation (i.e. tent 2 in season 1 and tents 1 and 2 in 

season 3).  
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Table 5-7 F test P values for photosynthesis, electron transport rate, stomatal conductance and 
transpiration rate of cultivars Sicot 53 and Sicala 45 under ambient (control) and high temperature (tent 
1) regimes in the field in season 1 (2006) in Narrabri and season 2 (2006) in Texas, where n.s. represents F 
test P values where P<0.05. 

Measurement Day Cultivar Temperature 

treatment 

Cultivar * Temperature 

treatment 

Season 1 

Photosynthesis 0 n.s. 0.006 n.s. 

 2 n.s. <0.001 0.007 

 7 0.031 n.s. n.s. 

Electron transport rate 0 n.s. 0.009 n.s. 

 2 n.s. <0.001 0.036 

 7 0.003 n.s. n.s. 

Stomatal conductance 0 n.s. n.s. n.s. 

 2 n.s. <0.001 n.s. 

 7 n.s. n.s. n.s. 

Transpiration rate 0 n.s. n.s. n.s. 

 2 n.s. <0.001 n.s. 

 7 n.s. n.s. n.s. 

Season 2 

Photosynthesis 0 n.s. 0.042 n.s. 

 6 n.s. <0.001 0.004 

 8 n.s. <0.001 n.s. 

Electron transport rate 0 n.s. n.s. n.s. 

 6 n.s. <0.001 n.s. 

 8 n.s. <0.001 n.s. 

Stomatal conductance 0 n.s. <0.001 0.002 

 6 0.049 0.002 n.s. 

 8 n.s. 0.010 n.s. 

Transpiration rate 0 n.s. <0.001 0.003 

 6 0.026 0.008 n.s. 

 8 <0.001 n.s. n.s. 

Photosynthesis 

For season 1, there was a general decrease in photosynthetic rate over time of measurement 

across all treatments (Figure 5-10). The photosynthetic rate was lower under the tents (day 2) 

compared with ambient (control) conditions and lowest for Sicala 45 compared with Sicot 53 
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(P=0.007). The photosynthetic rate of Sicot 53 was higher than Sicala 45 under optimal 

conditions (recovery), 7 days after initiation of the treatments (P=0.031) (Figure 5-10).  

For season 2, the photosynthetic rate of plants grown under the tents (day 6) was lower than 

the control and was lower (P=0.042) for Sicot 53 than Sicala 45 under the tents (Figure 5-10). 

Electron transport 

The electron transport rate of plants under the tents (day 2) was lower compared with ambient 

(control) conditions (P=0.036) for season 1 (Figure 5-10). For season 2, the electron transport 

rate was decreased (P<0.001) under the tents (day 6) but this difference was not cultivar 

specific (Figure 5-10). 
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Figure 5-10 Mean (a, c) photosynthetic rate (µµµµmol CO2 m
-2 s-1) and (b, d) electron transport rate (µµµµmol e-1 

m-2 s-1) of cotton cultivars Sicot 53 and Sicala 45 grown under ambient (control) and high temperature 
(tent) regimes in the field under tent 1 in (a, b) season 1 (2006) at the Narrabri field site and (c, d) season 
2 (2006) at the Texas field site. Measurements were taken prior to initiation of high temperature stress 
(day 0) and on various days post tent installation. Measurements were also taken after removal of the 
tents in season 1 (day 7) and season 2 (day 8). The vertical bar represents the l.s.d. for temperature 
treatment by cultivar interaction at P=0.05. 
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Stomatal conductance and transpiration 

Stomatal conductance and transpiration rate decreased (P<0.001) under the tents for season 1 

(Table 5-7). No cultivar differences were evident for stomatal conductance or transpiration in 

season 1. For season 2, stomatal conductance (P=0.002) and transpiration (P=0.008) was 

higher under the tents compared with ambient conditions (Table 5-7). Stomatal conductance 

(P=0.049) and transpiration rate (P=0.026) were higher for Sicala 45 than Sicot 53 in season 

2 (Figure 5-10).  
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Figure 5-11 Mean (a, c) stomatal conductance (mol H2O m-2 s-1) and (b, d) transpiration rate (mmol H2O 
m-2 s-1) of cotton cultivars Sicot 53 and Sicala 45 grown under ambient (control) and high temperature 
(tent 1) regimes in the field in (a, b) season 1 (2006) at the Narrabri field site and (c, d) season 2 (2006) at 
the Texas field site. Measurements were taken prior to initiation of high temperature stress (day 0) and 
on various days post tent installation. Measurements were also taken after removal of the tents in season 
1 (day y) and season 2 (day 8). The vertical lines represent the l.s.d. for temperature treatment by cultivar 
interaction at P=0.05. 
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Relationship between physiological measurements or indices and yield 

Photosynthesis, electron transport rate, stomatal conductance, transpiration rate and principal 

components 1 and 2 were fitted to a linear regression to determine whether there was any 

correlation with seed cotton yield under field conditions. For tent 1 in season 1 a strong and 

(P<0.001) positive relationship was found between seed cotton yield and principal 

component 1 which accounted for 40 % of the variation, between seed cotton yield and 

electron transport rate which accounted for 36 % of the variation (Figure 5-12) and also 

between seed cotton yield and principal component 2 which accounted for 15 % of the 

variation (Table 5-8).  

Although a positive relationship was found between seed cotton yield and photosynthesis, 

this relationship was not strong (P=0.036) and only accounted for 4 % of the total variation 

(Table 5-8). A negative relationship was found between seed cotton yield and stomatal 

conductance (P=0.002) which accounted for 14 % of the variation, and also for seed cotton 

yield and transpiration rate (P<0.001) which accounted for 21 % of the variation (Table 5-8). 

For tent 2 in season 3 a relationship (P<0.05) was determined for seed cotton yield and 

electron transport, stomatal conductance, transpiration rate or principal component 1 and the 

coefficients of variation accounted for less than 10 % of the variation (Table 5-8).  
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Table 5-8 Correlation between photosynthesis, electron transport rate, stomatal conductance, 
transpiration rate, principal component 1 or principal component 2 and seed cotton yield (g m-2) under 
ambient (control) and high temperature (tent) regimes in the field for tent 1 in season 1 (2006) and/or tent 
2 in season 3 (2007) in Narrabri, where n.s. represents F test P values where P<0.05. 

Measurement Season n Adjusted R2 Equation F test P 

value 

Photosynthesis 1 85 0.04 y=286.1377+4.31x 0.033 

 3 192 - - n.s. 

Electron transport rate 1 85 0.36 y=-99.77+2.24x <0.001 

 3 192 0.03 y=297.22+0.83x 0.008 

Stomatal conductance 1 85 0.14 y=584.75-518.10x <0.001 

 3 192 0.05 y=610.02-107.49x <0.001 

Transpiration rate 1 85 0.21 y=695.83-42.04x <0.001 

 3 192 0.05 y=688.73-13.71x 0.001 

Principal component 1 1 85 0.4 y=161.29+114.37x <0.001 

 3 192 0.07 y=517.52+31.21x <0.001 

Principal component 2 1 85 0.15 y=487.09-45.45x <0.001 

 3 192 - - n.s. 
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Figure 5-12 Correlation between electron transport rate and seed cotton yield for cotton cultivars Sicot 53 
and Sicala 45 grown under ambient (control) field conditions and under the tents in season 1 (2006) at 
Narrabri. Each data point represents the treatment mean of 4 replicates. 

5.3.2 Experiment 2 

Photosynthetic rate and electron transport was plotted against irradiance for cotton cultivars 

Sicot 53 and Sicala 45, grown under optimal (32 oC) and high (42 oC) temperature conditions 

in the growth cabinet. The data were fitted to a waiting-in-line curve to generate a light 

saturation curve for both temperature regimes and cultivars. A summary for cabinet 

temperature and cultivar main effects interaction for light saturation curves fitted by a 

waiting-in-line distribution curve is summarised in Table 5-9.  
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Table 5-9 F test P values for coefficients of the responses using the waiting-in-line model of irradiance and 
photosynthesis or electron transport rate for cultivars Sicot 53 and Sicala 45 grown under control (32 oC) 
or high (42 oC) temperature regimes in the growth cabinet at Narrabri, NSW, where n.s. represents F test 
P values where P<0.05. 

Parameter Cultivar Cabinet temperature Cabinet temperature * Cultivar 

Photosynthesis 

α0 n.s. <0.001 n.s. 

Optimum E n.s. <0.001 n.s. 

Pmax n.s. <0.001 n.s. 

Electron transport rate 

α 0 n.s. <0.001 n.s. 

Optimum E n.s. <0.001 n.s. 

Pmax n.s. <0.001 n.s. 

Photosynthetic efficiency (α0), optimum E and Pmax were lower (P<0.001) at 42 oC than at 

32 oC however no cultivar differences were found for α0, optimum E or Pmax (Table 5-9) 

and hence a single waiting-in-line regression was fitted to the data for the optimal (32 oC) and 

high (42 oC) temperature growth cabinets (Figure 5-13).  
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Figure 5-13 (a, c) Photosynthetic rate and (b, d) electron transport rate for a fitted waiting-in-line  model 
for cotton cultivars Sicot 53 and Sicala 45, grown under (a, b) optimal (32 oC) and (c, d) high (42 oC) 
temperature regimes in a growth cabinet at Narrabri, NSW. Each data point represents the mean of 4 
replicates. 
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The photosynthesis and electron transport rate light response curves were a good fit (adjusted 

R2 > 0.89) and highly significant (P<0.001) (Table 5-10). 

Table 5-10 Relationships for values fitted using the waiting-in-line model of irradiance and 
photosynthesis or electron transport rate and the linear model of irradiance and stomatal conductance or 
transpiration rate for cultivars Sicot 53 and Sicala 45 grown under control (32 oC) or high (42 oC) 
temperature regimes in the growth cabinet at Narrabri, NSW, where n.s. represents F-test values where 
P>0.05. The dashed line represents treatments for which P>0.05. 

Cabinet (oC) n Adjusted R2 Equation F test P value 

Photosynthesis    

32 282 0.89 y=775.82*2.54e-5*x*exp(2.54e-5*x) <0.001 

42 232 0.92 y=632.88*2.32e-5*x*exp(2.32e-5*x) <0.001 

Electron transport rate   

32 287 0.98 y=766.55*4.72e-4*x*exp(4.72e-4*x) <0.001 

42 232 0.98 y=624.42*5.43e-4*x*exp(5.43e-4*x) <0.001 

Stomatal conductance   

32 282 - - n.s. 

42 232 - - n.s. 

Transpiration rate    

32 282 0.21 y=3.93+0.0011*x <0.001 

42 232 0.05 y=5.79+0.0015*x <0.001 

Stomatal conductance and transpiration rate were plotted against irradiance for cultivars Sicot 

53 and Sicala 45, grown under optimal (32 oC) and high (42 oC) temperature regimes in the 

growth cabinet. The data were fitted to a linear regression to generate a light response curve 

for both temperature regimes and cultivars. There was no correlation between irradiance and 

stomatal conductance (Table 5-10). However, a positive correlation exists between irradiance 

and transpiration rate (Figure 5-14) under optimal and ambient conditions in the growth 

cabinet and explained 21 % and 5 % of the variation in the data respectively (Table 5-10). 

The y-intercept (P=0.009) and slope (P=0.022) of the regression differed for plants under 

optimal (32 oC) and high (42 oC) temperature regimes in the growth cabinet but no cultivar 

differences were evident for these parameters.  
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Figure 5-14 (a, c) Stomatal conductance and (b, d) transpiration rate for a fitted linear model for cotton 
cultivars Sicot 53 and Sicala 45, grown under (a, b) optimal (32 oC) and (c, d) high (42 oC) temperature 
regimes in a growth cabinet at Narrabri, NSW 

A linear mixed model (REML) was run to determine cultivar differences in photosynthesis, 

electron transport rate, stomatal conductance and transpiration rate at various rates of 

irradiance that were not distinguishable using the model-fitting analysis. Photosynthesis and 

electron transport rate decreased (P<0.001) whilst stomatal conductance (P=0.012) and 

transpiration rate (P<0.001) increased under high temperatures in the growth cabinet (Table 

5-11). Furthermore, the decrease in electron transport rate for Sicala 45 under high (42 oC) 

temperatures in the cabinet was greater compared with Sicot 53 at high levels of irradiance 

(P<0.001) (Table 5-11). No cultivar differences were evident for photosynthesis, stomatal 

conductance or transpiration rate (Table 5-11). 



 

Table 5-11 F test P values for photosynthesis, electron transport rate, stomatal conductance and transpiration rate of cultivars Sicot 53 and Sicala 45 under control 
(32 oC) and high (42 oC) temperatures in the growth cabinet and at various levels of irradiance (200, 400, 800, 1200, 1600, 200 µµµµmol PAR m-2 s-1), where n.s. 
represents F test P values where P<0.05. 

Measurement Cultivar Cabinet 

temperature 

Irradiance Cultivar * Cabinet 

temperature 

Cultivar * 

Irradiance 

Cabinet temperature * 

Irradiance 

Cultivar * Cabinet 

temperature * Irradiance 

Photosynthesis n.s. <0.001 <0.001 n.s. n.s. <0.001 n.s. 

Electron transport rate n.s. <0.001 <0.001 0.007 n.s. n.s. <0.001 

Stomatal conductance n.s. 0.012 n.s. n.s. n.s. n.s. n.s. 

Transpiration rate n.s. <0.001 <0.001 n.s. n.s. n.s. n.s. 

      

88 
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There was an interaction (P<0.001) between cultivar and cabinet temperature for leaf 

temperature (Figure 5-15). Leaf temperature was higher for leaves exposed to high (42 oC) 

air temperatures in the growth cabinet compared with optimal (32 oC) air temperatures. 

Under optimal (32 oC) air temperatures, leaf temperature was higher for Sicala 45 

compared with Sicot 53. However, there was no cultivar differentiation for leaf 

temperature in the high (42 oC) air temperature cabinet.  
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Figure 5-15 Mean leaf temperature (oC) for cultivars Sicot 53 and Sicala 45 grown under control (32 
oC) and high (42 oC) temperatures in the growth cabinet. The vertical line indicates an l.s.d. value at 
P=0.05 for a cabinet temperature by leaf temperature interaction. 
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5.4 Discussion 
Leaf level measurements of electron transport rate and photosynthesis successfully 

detected differences in the response of cotton cultivars to high temperature stress in the 

field but not in a growth cabinet. Measurements of stomatal conductance and transpiration 

were however, unsuccessful in detecting cultivar differences in both environments.  

Electron transport rate and photosynthesis were higher for the heat tolerant cultivar Sicot 

53 under high temperatures in the field. For seasons 1 and 2, the photosynthetic and 

electron transport rate of Sicot 53 plants was slightly higher under the tents in the field 

compared with Sicala 45 (Figure 5-7). Conversely, stomatal conductance and transpiration 

were higher for Sicala 45 compared with Sicot 53 (Figure 5-8) under the tents in season 2. 

However, no cultivar differences were evident in physiological function for measurements 

taken under tent 2 in season 1, or under any tent in season 3, thereby suggesting that 

cultivar specificity for physiological function under high temperature stress in the field is 

highly variable.  

To account for differences in seasonal weather and field sites, physiological measurements 

were pooled within each season. Furthermore, pooling of physiological data across the 3 

seasons provided a simple indication of cultivar specific physiological capacity under high 

temperatures in the field, regardless of specific season variability. These two analyses 

showed that photosynthesis and electron transport rate were reduced whilst stomatal 

conductance and transpiration rate were increased under the tents (Figure 5-1, Figure 5-2). 

Pooled analysis within and across 3 seasons was able to resolve cultivar differences in 

photosynthesis and Sicala 45 was lower compared with Sicot 53 under the tents (Figure 

5-1). Analysis of individual tents at various times throughout the growing seasons was 

sufficiently sensitive to determine cultivar differences in photosynthesis for tent 1 in 

seasons 1 and 2 and for electron transport rate for tent 1 in season 1 which corresponds 
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with prolonged exposure to high (45 oC) temperatures under the tents (Figure 5-10). 

Hence, pooled analysis may provide a simple indication of gross changes in plant 

physiology in response to abiotic stress and accounts for periods whereby cultivar 

differences were not evident due to external variables. However, analysis of data taken on 

individual measurement days is necessary to confidently and consistently identify cultivar 

specific tolerance to high temperature stress in the field. This method of analysis may also 

be employed to identify cultivar differences in heat tolerance at various developmental 

stages, as well as under varying weather conditions thereby providing a more 

comprehensive indication of stress tolerance.  

At high levels of irradiance, the decrease in electron transport rate under high temperatures 

in the growth cabinet was greater for Sicala 45 compared with Sicot 53 (Table 5-11) but 

no associated cultivar differences were determined for leaf temperature (Figure 5-15). 

Cultivar specificity for electron transport rate under high temperatures in the growth 

cabinet has been previously reported (Bibi et al. 2008) and agrees with the current field 

experiments indicating a greater decrease for electron transport rate of Sicala 45 under the 

tents compared with Sicot 53.  

No cultivar discrimination was evident for photosynthesis at various irradiance levels and 

at high temperatures in the growth cabinet (Table 5-11) and agrees with previous research 

indicating no cultivar specificity for photosynthesis under elevated temperatures in a 

growth cabinet (Bednarz and van Iersel 2001; Bibi et al. 2008). Similarly, no cultivar 

differentiation was evident for stomatal conductance or transpiration under high 

temperatures in the growth cabinet (Figure 5-14). This contradicts previous research 

indicating cultivar specificity for stomatal conductance of cotton under high temperatures 

in the glasshouse (Rahman 2005).  
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Fitting a light response curve for photosynthesis, electron transport rate, stomatal 

conductance or transpiration rate did not improve the resolution of the measurements for 

detection of cultivar differences in physiological function under high temperatures in the 

growth cabinet (Table 5-9). Hence, evaluation of the irradiance response curve of cotton 

under high temperatures in the growth cabinet was not an effective method of determining 

cultivar differences in physiology under heat stress. 

Photosynthesis was consistently decreased when leaf material was subjected to high 

temperature stress under tents in the field when data was considered under individual 

tents, pooled within a season or pooled across 3 seasons. This is consistent with previous 

work indicating a decline in carbon assimilation increasing air temperature (Bednarz and 

van Iersel 2001). Furthermore, Sicala 45 had lower photosynthetic rates than Sicot 53 

under the tents (Figure 5-1). This is consistent with previous work indicating cultivar 

differences for carbon assimilation under moisture deficit in the field (Ullah et al. 2008) 

and may be attributed to genotypic differences in leaf temperature (Quinsenberry et al. 

1994), but this cultivar specificity has not been reported for photosynthesis under in-situ 

high temperature stress in the field.  

Photosynthesis is a highly complex process that is variably affected by local 

environmental conditions in the field.  Pooled analysis of photosynthesis across multiple 

seasons may suggest evidence of genotypic heat tolerance in a long term cotton production 

system, but analysis for each individual season indicated that tent-induced decreases in 

photosynthesis were cultivar specific for all seasons whilst cultivar differences were only 

evident for electron transport rate in season 3 (Figure 5-7). This suggests that cultivar 

specificity for photosynthesis of plants under prolonged exposure to high (45 oC) 

temperatures (Table 3-6) in hot seasons (seasons 1 and 2) is more likely to be primarily 



 93

attributed to Rubisco activase activity (Crafts-Brandner and Salvucci 2004; DeRidder and 

Salvucci 2007; Law and Crafts-Brandner 1999; Long and Bernacchi 2003). Analysis of 

six cotton cultivars by Pettigrew and Turley (1998) found no cultivar specificity for 

Rubisco activity in the absence of stress, but there may be potential for identification of 

cultivar specific Rubisco activity for cotton grown under abiotic stress conditions (Bose 

and Ghosh 1995). There was no correlation between photosynthesis and yield, thereby 

suggesting that although Rubisco activation may be the primary limitation to 

photosynthesis, it may not be the primary limitation to yield under field conditions. 

Similar decreases were noted for photosynthesis and electron transport under the tents 

indicating that these physiological processes are inhibited to a similar degree under high 

temperature stress (Figure 5-10). This is consistent with comparable reductions in 

photosynthesis and electron transport rate under growth cabinet conditions in this study 

(Figure 5-13), thus suggesting that electron transport rate may be the limitation to 

photosynthesis under the tents and under high temperature stress in the growth cabinet (cf. 

Wise et al. 2004) and indicating that rapid determination of electron transport rate may be 

used to predict photosynthesis under field conditions (Earl and Tollenaar 1999).  

Electron transport rate was positively correlated with yield for seasons 1 (Table 5-8). This 

is probably the first report of a strong relationship between ETR and yield which suggests 

potential development of fluorescence measurements as a tool for screening a broad 

genetic range of cultivars for thermotolerance under field conditions. The reliability of 

ETR measurements for heat tolerance determination may be attributed to high 

repeatability of fluorescence measurements, compared to high environmental sensitivity 

and complexity associated with photosynthesis measurements. Genotypic differences for 

water and carbon dioxide flux may influence photosynthetic capacity under stress. Season 
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specific analysis showed that a negative relationship existed between photosynthesis and 

conductance in season 2 (Figure 5-9), which is consistent with the work of Lu et al. (1997) 

who showed that photosynthesis reached a plateau at air temperatures of above 30 oC, 

whilst stomatal conductance continued to increase under well-watered conditions. The 

data under the tents are different from previous field and glasshouse studies suggesting 

that stomatal conductance decreased and was positively correlated with photosynthesis 

under high temperatures (Rahman 2005) and water stress conditions (El-Sharkawy and 

Hesketh 1964; Leidi et al. 1993; Pettigrew 2004; Ullah et al. 2008). High stomatal 

conductance and transpiration under the tents in this study may be due to high relative 

humidity (Barbour and Farquhar 2000) and an absence of water deficit stress, thus 

providing evidence for different physiological stress responses to heat stress for plants 

grown under well watered, compared with drought conditions. 

Overall, stomatal conductance and transpiration rate were higher for Sicala 45 compared 

with Sicot 53 whilst photosynthesis and electron transport were higher for Sicot 53. This 

cultivar specificity indicates that Sicala 45 has a higher potential for heat avoidance under 

high temperature stress in the field, associated with a decline in photosynthesis (Lu et al. 

1997) and yield potential which was not evident under high temperature stress in the 

growth cabinet. This may be attributed to a higher level of stress in Sicala 45 compared 

with Sicot 53 under field conditions and hence, a greater demand for heat dissipation 

mechanisms to maintain leaf temperature. Selection for enhanced evaporative cooling 

under high temperature stress increases the susceptibility of the plant to water stress (Lu et 

al. 1994), thus increasing the water input requirement of the system. As future farming 

systems may be operating under water limiting conditions, breeding programs need to 

target selection of water-use efficient heat tolerant genotypes, rather than heat avoiding 

genotypes.  



 95

Furthermore, stomatal conductance and transpiration were negatively correlated with yield 

in seasons 1 and 3 (Table 5-8) however, it is likely that this is a coincidence due to an 

unsuccessful heat avoidance mechanism where increased stomatal conductance and 

transpiration under the tents did not prevent yield reduction (Lu et al. 1994). The 

correlation coefficient (R2) for stomatal conductance and transpiration with yield were 

higher in season 1 than season 3 suggesting that genes for thermotolerance are more 

strongly up-regulated only under warmer conditions or at later growth stages, thereby 

highlighting the importance of screening for heat stress under hot conditions in the field 

(Lopez et al. 2003b; Rahman 2005). On the basis of conductance and yield data, Sicala 45 

appears to have relatively lower tolerance to high temperatures and thus would be 

preferentially excluded from breeding programs for heat tolerance. 

A single index for plant physiological function under abiotic stress was created and 

provided a broader picture of gross physiological changes in response to high temperature 

stress than analysis of single physiological measurements in isolation. In this study, 

principal component analysis was used to describe changes in plant physiological function 

under the tents compared with ambient (control) field conditions, pooled across three 

growing seasons and two locations. The plant physiological capacity index (PC1) provided 

an indication of the overall changes in photosynthesis, electron transport rate, stomatal 

conductance and transpiration in response to temperature stress whilst PC2 suggested 

subtle differences between cotton cultivars under field conditions. Principal component 

analysis of the physiological capacity of Sicot 53 and Sicala 45 under ambient (control) 

and tent regimes in the field suggested that photosynthesis and electron transport rate are 

decreased under the tents, whilst stomatal conductance and transpiration rate are increased 

under the tents. Cultivar differences have similarly been determined for quality and yield 

in broccoli (Tan et al. 1999b) and barley (Rajala et al. 2007) and physiological traits and 
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yield in cotton under water-deficit stress in the field (Ullah et al. 2008). These findings are 

consistent to that of analysis of each individual physiological process, pooled across the 3 

seasons and hence the principal component analysis is an effective method of presenting a 

large array of data in a simple index.  This index may be further extended to incorporate 

yield and fibre quality parameters to effectively identify heat tolerant cultivars under field 

conditions  

Although the plant physiological index provides a broad-picture of cotton cultivar 

responses to high temperature stress in the field these physiological parameters varied 

between seasons for which, environmental variables largely overshadowed genotypic 

differences in physiological function (Pettigrew and Turley 1998). For example, the 

Australian cotton cultivars exhibited lower photosynthesis and higher stomatal 

conductance in season 2 at the Texas field site (Figure 5-7), thereby highlighting the 

importance of screening for stress tolerance in local environments. Although pooling 

photosynthesis, electron transport rate, stomatal conductance and transpiration rate across 

the seasons did not increase the resolution for detection of cultivar differences in heat 

tolerance, the physiological index may provide a simplistic tool for identification of key 

physiological functions influenced by abiotic stress over a number of seasons and across 

multiple locations.  

5.5 Conclusion 
Plant physiological measurements provide a valuable resource in describing the basis of 

stress-responsive yield under field conditions, provided that the variable nature of field 

experiments is considered. Sicot 53 was consistently shown to have a high capacity for 

photosynthesis and stomatal conductance at all levels of measurement in the field thus 

indicating relatively high temperature tolerance. Conversely, Sicala 45 was consistently 
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shown to have higher stomatal conductance and transpiration under high temperature 

stress in the field, indicating a high capacity for heat avoidance, but not necessarily 

tolerance. 

Pooled measurements of physiological parameters provide a simple index for determining 

cultivar differences in physiological function within an entire growing season, or across 

multiple seasons. Pooled measurements and the physiological index consistently showed 

that Sicot 53 had a higher photosynthetic rate than Sicala 45. However, consideration of 

measurements on individual days under the tents indicate specific circumstances such as 

weather conditions or growth stages where cultivar differences in photosynthesis and 

electron transport rate occur. Hence, it would be beneficial to use both broad-spectrum and 

specific analyses of physiological function to effectively determine which cultivars have a 

relatively higher level of thermotolerance and which conditions may be targeted to 

minimise cultivar specific heat sensitivity. 

Electron transport rate has the greatest potential for development of a rapid and reliable 

diagnostic tool for heat tolerance determination. However, inconsistencies under field 

conditions indicate the importance of evaluation over a number of seasons and at a number 

of time periods throughout each season. Recommendations for genotypes with superior 

stress tolerance may then be based on measurements taken on days where the stress is 

evident. These recommendations may be further strengthened by the supplementation of 

physiologically based methods for stress screening, by cost-effective, rapid and reliable 

laboratory-based screening assays for thermotolerance (Bibi et al. 2008; Burke 2007). 

This may be achieved by targeting the underlying biochemical processes that contribute to 

differences in plant physiology under abiotic stress in the field.                                                                                             
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Chapter 6 Screening for Cultivar Specific Thermotolerance at 

the Cellular Level 

6.1 Introduction 
Reductions in photosynthesis above the thermal kinetic window for cotton (32 oC) (Burke 

et al. 1988) can be partially attributed to decreased membrane integrity and reduced 

selectivity of cytoplasmic and plasma membranes associated with protein denaturation and 

loss of enzyme functionality (Gupta 2007). Breeding through selection of biochemical 

fitness under environmental stress may result in the development of stress tolerant 

genotypes. Traditional stress tolerance screening assays using biochemical measurements 

have focused on sampling of glasshouse grown plants exposed to highly regulated 

temperature treatments.  

Membrane permeability has been extensively employed for crop thermotolerance 

determination, particularly in glasshouse-grown wheat (Assad and Paulsen 2002; Bajji et 

al. 2002; Blum and Ebercon 1981; Saadalla et al. 1990a; Shanahan et al. 1990), pasture 

species (Schaff et al. 1987) sorghum (Sullivan 1971), Brassica spp. (Hossain et al. 1995), 

cowpeas (Ismail and Hall 1999) soybean (Martineau et al. 1979a; Sethar et al. 1997) and 

cotton (Ashraf et al. 1994; Bibi et al. 2008). However, these assays use high temperatures 

generated through growth cabinet or water bath regulation to generate stress and few 

studies have evaluated these techniques under field conditions.  

Indirect selection for membrane integrity using plant physiological measurements and 

assays can be further developed through the use of molecular techniques. Targets for such 

breeding programs include reducing levels of unsaturated fatty acids to counteract 

membrane fluidity (Murakami 2000), increased osmolyte accumulation (Alia et al. 1998) 
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and increased heat shock protein synthesis (Lee et al. 1995), particularly with respect to 

sensitive physiological stages such as flowering (Ismail and Hall 1999). 

Similarly, quantification of enzymatic viability under temperature stress in the laboratory 

has been reported for wheat (Porter et al. 1995), pasture species (Schaff et al. 1987) and 

cotton (Burke 2007; de Ronde and van der Mescht 1997; McDowell et al. 2007; 

McMichael and Burke 1994; Tan et al. 1999a) grown under glasshouse conditions. These 

methods have successfully determined some crops, growth stages or cultivars to have a 

high relative thermotolerance under glasshouse and growth cabinet conditions.  

Laboratory assays for biochemical screening for thermotolerance rely on small tissue 

samples under concentrated heat stress. However, there is little extension of this 

knowledge to actual field conditions; hence the assumption that these methods can be used 

to select for superior cultivars under high temperature stress in the field has not been 

validated. Although the variable nature of the field makes it difficult to isolate a specific 

stress and the specific impacts of this stress on the plants, it is essential to establish 

whether cultivar differences found under growth cabinet conditions actually translate to 

field systems and hence determine the validity of biochemical assays for stress tolerance 

screening in breeding programs (Marcum 1998).  

A series of experiments was conducted to determine the effectiveness of laboratory based 

screening for cultivar specific thermotolerance using the membrane leakage and enzymatic 

viability assays, and to assess whether these differences are reflected under field 

conditions, thus validating the use of rapid and reliable laboratory screening mechanisms 

for the identification of thermotolerance in cotton cultivars under field conditions. The aim 

of this series of experiments was to determine genotypic specific thermotolerance of 
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cotton cultivars Sicot 53 and Sicala 45 using the cellular membrane integrity and enzyme 

viability assays for; 

(a) field-grown plant material by evaluation of a temperature response curve (25, 35, 

40, 45, 50, 55, 65 oC) via incubation in a thermally regulated water bath 

(experiment 1); 

(b) field-grown plant material under ambient (control) or high (tent) temperatures and 

correlated to yield (experiment 2); and 

(c) growth cabinet grown plant material under optimal (32 oC) or high (42 oC) 

temperature regimes (experiment 3). 

Specifically, the hypothesis is that there are no cultivar specific differences in tolerance to 

high temperature stress that are distinguishable by application of the membrane integrity 

and enzyme viability assays under growth cabinet and field conditions. 

6.2 Materials and methods 

6.2.1 Site description 

Field experiment 1 was conducted at The Australian Cotton Research Institute, Narrabri 

during season 1 (2006). Experiment 2 was conducted in the field during seasons 1 (2006) 

and 3 (2007) in Narrabri and season 2 (2006) in Texas. Experiment 3 was a controlled 

environment study conducted at the Australian Cotton Research Institute, Narrabri (Table 

6-1). Details of each experiment are presented in Chapter 3.  
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Table 6-1 Description of experiments 1, 2 and 3 used for assessing membrane integrity and enzyme 
viability under field and growth cabinet conditions 

Experiment Site Season Year Location 

1 Field 1 2006 Narrabri 

2 Field 1 2006 Narrabri 

2 Field 2 2006 Texas 

2 Field 3 2007 Narrabri 

3 Growth cabinet - 2007 Narrabri 

6.2.2 Treatments 

Experiment 1 

Cotton genotypes Sicot 53, Sicala 45, CSX 99209-376 and Sicala V-2 were grown in a 

randomised block design with four replicates, blocked down the field. Plants were 

sampled under ambient conditions between 1300 and 1430 h then immediately transported 

back to the laboratory. The third youngest fully expanded leaf was collected from 4 plants 

per treatment. Leaf discs of 10 mm diameter were cut from the interveinal portion of the 

leaf and incubated at various temperatures (25, 35, 40, 45, 50, 55, 60 oC) for 2 h in a water 

bath. The leaf tissue was analysed for membrane integrity and enzyme viability.  

Experiment 2 

Leaves from cotton cultivars Sicot 53 and Sicala 45 were sampled under ambient (control) 

conditions and under tents between 1300 and 1430 h then immediately transported to the 

laboratory. Leaf discs (10 mm diameter) were sampled from the interveinal portion of the 

leaf and then incubated at control (25 oC) and high (45 oC) temperatures in a water bath. 

The leaf tissue was simultaneously analysed for membrane integrity and enzyme viability. 

Whole plants were harvested and processed for yield as previously described (Chapter 4). 

Experiment 3 

Pots containing Sicot 53 or Sicala 45 plants were transferred from the glasshouse to the 

growth cabinet as previously described (Chapter 3). Plants were sampled for membrane 
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integrity and enzyme viability at 1230 h (Time 0) and subsequently sampled every 24 h 

for 3 d. Leaf discs were punched from the interveinal area of the 4th youngest fully 

expanded leaf with 4 leaves per treatment. Discs were analysed for cell membrane 

integrity and enzyme viability after a 2 h incubation at control (25 oC), moderately high 

(45 oC) and killing (90 oC) temperatures in a water bath.  

6.2.3 Measurements 

Cell membrane integrity assay 

Five discs from each leaf were triple rinsed with distilled water to remove exogenous 

electrolytes and placed in 25 mL sealed glass vials containing 10 mL distilled water. The 

vials were incubated in a controlled temperature water bath at various temperatures 

(specific for each experiment) for 2 h at a specified incubation temperature (t). Samples 

incubated at high water bath temperatures (>25 oC) were left to cool 25 oC. Initial 

electrical conductivity (IECt), a measure of membrane leakage, was determined using a 

low range (0 to 1990 µS/cm), waterproof ECTestr calibrated conductivity meter (Oakton 

Instruments, Vernon Hills, IL, USA). Discs were then autoclaved at 121 oC and 103 kPa 

for 15 mins then cooled to 25 oC. Final electrical conductivity (FECt) of the solution was 

measured with the calibrated conductivity meter. Relative electrical conductivity (RECt) 

was then determined (Equation 6-1) and an increasing RECt shows a decreasing 

membrane integrity (Flint et al. 1967; McDowell et al. 2007). 

RECt= � IECt

FECt

� * 100 
(Equation 6-1) 

Relative cellular injury (RCIt) was also determined (Equation 6-2) to evaluate membrane 

integrity under high air temperatures as well as localised heat stress in a temperature 

controlled water bath. For this measurement, the IECt and FECt were determined for leaf 
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discs incubated at a treatment temperature (t) or a control temperature (c) for 2 h in a 

temperature controlled water bath. RCIt similarly increases with decreasing membrane 

integrity (Rahman et al. 2004; Sullivan 1971). 

RCIt= (1-

1- � IECt

FECt
�

1- � IECc

FECc
�

)*100 (Equation 6-2) 

Enzyme viability assay 

Discs were triple rinsed with distilled water to remove exogenous residues and 2 discs 

were placed in a 25 mL sealable glass vial containing 0.5 mL distilled water (Steponkus 

and Lanphear 1967). The vials were incubated at different temperatures (t) (specified for 

each experiment) for 2 h in a controlled temperature water bath. A phosphate buffer 

solution containing 0.01 M phosphate buffered saline (0.138 M NaCl; 0.0027 M KCl with 

TWEEN® 20 (0.05 % v/v), pH 7.4, at 25 °C) and 0.8 % w/v 2,3-5, triphenyltetrazolium 

chloride (TTC) (Merck) was prepared and 8 mL was added to each vial. The leaf was 

vacuum infiltrated at -33 kPa for 15 mins to ensure TTC uptake into the leaf and left to 

incubate at 25 oC in the dark for 24 h. Discs were triple rinsed with distilled water, 

submerged in 2 mL of 95% (v/v) ethanol and incubated for 24 h in the dark. Enzyme 

viability was measured spectrophotometrically at 530 nm using 95 % ethanol as a 

reference.  

A high absorbance at 530 nm (Abst) indicates strong reduction of the TTC salt to a red 

coloured triphenyl formazan due to the dehydrogenase activity of the mitochondrial 

respiratory chain and hence indicates either low stress conditions or high inherent plant-

based tolerance to stress (de Ronde et al. 1995; McDowell et al. 2007; Steponkus and 

Lanphear 1967). Low absorbance is indicative of impaired dehydrogenase activity and 

decreased capacity for reduction of the TTC salt to a red formazan product. This indicates 
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a high level of damage to the respiratory enzymes, and hence low enzyme viability, most 

likely attributed to abiotic stress imposed by the high temperature treatments. 

Acquired high temperature tolerance (AHTTt) was determined (Equation 6-3) as an index 

for enzyme viability under high temperature stress and this value increases with increasing 

viability of respiratory enzymes in the mitochondria. AHTTt evaluates enzyme viability 

under high air temperatures as well as localised heat stress in a temperature controlled 

water bath. To calculate this measurement the absorbance at 530 nm for leaf discs 

incubated for 2 h at a control (Absc) and high (Abst) temperature and for leaf discs held for 

10 minutes at a killing temperature (Absk) in a temperature controlled water bath were 

used (Porter et al. 1995). 

AHTTt= � Abst-Absk

Absc- Absk

� * 100 (Equation 6-3) 

 

For experiment 3, the spectrophotometer was unavailable and a micro plate manager (Bio-

rad Laboratories) was used to measure sample absorbance at 530 nm. All samples were 

incubated in tetrazolium buffer and ethanol as described above. After 24 h incubation in 

ethanol, 150 µL of each sample was transferred from the vial into a 96 well plate. 

Absorbance of an average of eight, 95 % v/v ethanol samples was subtracted from the 

absorbance of each sample at 530 nm using a Bio-Rad micro plate reader. Samples with 

high absorbance in the spectrophotometer were underestimated on the micro plate reader. 

All data presented are calibration of the absorbance at 530 nm from the micro plate reader 

(x), to the spectrophotometer (Abst) (Equation 6-4), to enable effective comparison 

between experiments 1, 2 and 3.  
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Abst = 0.0382 + 2.0964x (Equation 6-4) 

Where Abst = absorbance at 530 nm calibrated for a spectrophotometer and x = 

absorbance at 530 nm using a microplate reader 

6.2.4 Data analysis 

Experiment 1 

RECt was plotted against water bath incubation temperature (oC) and a 4 parameter 

Gompertz model (Equation 6-5) was fitted to each cultivar using regression analysis in 

SigmaPlot 9.0. One-way ANOVA (water bath incubation temperature) was used to 

determine cultivar differences for REC at various levels of water bath incubation 

temperature. The water bath temperature at which 50% RECt occurred (T50) was 

calculated for each replicate as the water bath incubation temperature for which RECt is 

equal to 50% (Equation 6-5). Cultivar differences for T50 were compared using one-way 

ANOVA (cultivar).  

RECt = y
0
+a*e

-e(
-�x-x0�

b
) (Equation 6-5) 

 

Where x = water bath temperature, y0 = Asymptotic REC as temperature decreases 

indefinitely (i.e. initial RECt), a = asymptotic increase in RECt that occurs as x approaches 

infinity, x0 = temperature (oC) at which the absolute growth rate is maximal and b = 

relative growth rate at x0. 

Abst was plotted against water bath incubation temperature (oC) and a 3 parameter 

Gompertz model (Equation 6-6) was fitted for each cultivar. One-way ANOVA (cultivar) 

was used to determine cultivar differences for Abst at various levels of water bath 

incubation temperature. 
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Abst = a*e
-(

-�x-x0�
b

) (Equation 6-6) 

Where x = water bath temperature, a = asymptotic decrease in Abst that occurs as x 

approaches infinity, x0 = temperature (oC) at which the absolute growth rate is maximal 

and b = relative growth rate at x0. 

Experiment 2 

Two-way ANOVA (cultivar*temperature treatment) was conducted for RECt or Abst to 

determine cultivar differences under ambient (control) or tent regimes in the field. 

Analysis was firstly conducted for the pooled averages for season 1, 2 and 3 combined and 

then separately for each season individually.  

A linear regression was fitted to correlate RECt or Abst with seed cotton yield under 

ambient or tent regimes in the field. Analyses were performed for Sicot 53 and Sicala 45 

under ambient (control) conditions or under the tents for the seasons 1 and 3 combined 

and then for each season separately. Season 2 was excluded from analysis as yield data 

from under the tents was misplaced.  

Experiment 3 

Two-way ANOVA (cultivar*cabinet time) was conducted for RECt or Abst under control 

(32 oC) or high (42 oC) temperature regimes in the growth cabinet and also various water 

bath temperatures (25 or 45 oC) for the interaction between cabinet time (d) and cultivar 

(Sicot 53 and Sicala 45).  Data for the control (32 oC) and high (42 oC) growth cabinet 

were analysed separately as the 2 growth cabinet treatment temperatures were imposed 

successively and not simultaneously. Two-way ANOVA (cultivar*cabinet time) was 

conducted for RCIt or AHTTt under control (32 oC) or high (42 oC) growth cabinet 

temperature regimes for the interaction between growth cabinet time (d) and cotton 

cultivar. 
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6.3 Results 

6.3.1 Experiment 1 

Membrane leakage increased (Table 6-2) sigmoidally with increasing temperatures for all 

cultivars (P<0.001) (Figure 6-1).  The mean RECt of Sicala 45 was higher than the mean 

RECt for the other three cotton genotypes at water bath incubation temperatures of 40 and 

45 oC. The extent of membrane leakage was not different between cultivars in the control 

(25 oC) or high temperature (50 and 65 oC) treatments. The temperature at which 50 % 

RECt (T50) occurred was lower for Sicala 45 compared with Sicot 53, CSX 99209-376 and 

Sicala V2 (Figure 6-2). 

Table 6-2 Fitted equations to the relationships between relative electrical conductivity (4-parameter 
Gompertz model) or absorbance at 530 nm (3-parameter Gompertz model) with increasing water 
bath temperatures for cotton cultivars Sicot 53, Sicala 45, CSX 99209-376 and Sicala V-2  grown 
under ambient field conditions in season 1 (2006) in Narrabri. Y represents RECt and x represents 
water bath temperature (oC), where n.s. represents F test values where P>0.05. 

Genotype n R2 Equation F test P value 

Relative electrical conductivity   

Sicot 53 24 0.94 y=11.15+62.04*e(-e(-(x-42.17)/2.89)) <0.001 

Sicala 45 24 0.93 y=13.89+64.30*e(-e(-(x-37.77)/2.02)) <0.001 

CSX 99209-376 24 0.96 y=11.83+71.09*e(-e(-(x-42.05)/2.79)) <0.001 

Sicala V-2 24 0.97 y=11.39+64.10*e(-e(-(x-44.82)/0.25)) <0.001 

Absorbance at 530 nm    

Sicot 53 24 0.82 y=1.07*e(-e(-(x-42.61)/-3.16)) <0.001 

Sicala 45 24 0.63 y=1.04*e(-e(-(x-41.82)/-10.45)) <0.001 

CSX 99209-376 24 0.78 y=177.41*e(-e(-(x+130.98)/-95.28)) <0.001 

Sicala V-2 24 0.58 y=0.80*e(-e(-(x-43.94)/-8.95)) <0.001 
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Figure 6-1 (a) Mean relative electrical conductivity (%) and (b) mean absorbance at 530 nm of cotton 
leaf tissue of cotton cultivars Sicot 53, Sicala 45, Sicala V-2 and breeding line CSX 99209-376, grown 
under field conditions during season 1 (2006) at Narrabri. The regression lines were fitted for a (a) 4-
parameter and (b) 3-parameter Gompertz model for each cultivar. The dashed horizontal lines 
represent the time to 50% (a) relative electrical conductivity. Asterisks (*) represent a water bath 
incubation temperature at which there is a significant difference between cultivars for (a) relative 
electrical conductivity or (b) absorbance at the 95% confidence interval. The vertical lines represent 
the l.s.d. for temperature by cultivar interaction at P=0.05. 
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Figure 6-2 Temperature (oC) at which 50 % relative electrical conductivity occurred for cotton 
cultivars Sicot 53, Sicala 45, Sicala V-2 and breeding line CSX 99209-376 grown under ambient field 
conditions in season 1 (2006) in Narrabri. Bars represented with the same letter are not different at 
P=0.05. The vertical line represents the l.s.d. for cultivar at P=0.05 for relative electrical conductivity 
T50. 

A 3-parameter Gompertz model was fitted for each cultivar for the Abst of cotton tissue 

incubated for 2 h at various temperatures in a temperature controlled water bath (Table 

6-2). Abst decreased with increasing temperature (P<0.001) (Figure 6-1). A cultivar 

specific response to water bath temperature was identified (P=0.026) and the Abst of Sicot 

53 was higher than the other three genotypes at both 35 and 40 oC (Figure 6-1). There was 

no cultivar differentiation at temperatures exceeding 50 oC.  
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6.3.2 Experiment 2 

Biochemical response to heat stress in the field, pooled over 3 seasons 

The RECt of cotton cultivars Sicot 53 and Sicala 45 was determined under ambient 

(control) and tent conditions for seasons 1, 2 and 3 as these two cultivars exhibited the 

greatest differences for RECt and Abst in experiment 1. The RECt of leaves under the tents 

was higher (P=0.038) than under ambient (control) field conditions, but was no cultivar 

differentiation for conductivity for either treatment. The Abst was higher (P=0.025) for 

Sicot 53 than Sicala 45 plants but there were no differences between the tents and ambient 

(control) field conditions (Figure 6-3). No interaction was determined. 

 

Figure 6-3 Mean (a, c) relative electrical conductivity (%) and (b, d) absorbance at 530 nm for (a, b) 
ambient (control) and high temperature (tent) conditions, and for (c, d) cotton cultivars Sicot 53 and 
Sicala 45 in the field, pooled for seasons 1 (2006) and 3 (2007) at the Narrabri field site and season 2 
(2006) at the Texas field site. The vertical line in (a) indicates the l.s.d. value at P=0.05 for temperature 
treatment main effects and in (d), indicates the l.s.d. value at P=0.05 for cultivar means. 
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Biochemical response to heat stress, for each season 

RECt and Abst were analysed separately for each tent event in each season. The RECt 

under the tents was higher than under ambient field conditions in season 1 (P=0.014) 

(Table 6-3), but there no cultivar differences were found (Figure 6-4). For season 3, RECt 

of Sicala 45 was higher (P=0.042) (Table 6-3) under the tents compared with Sicot 53 

under the tents and all plants under ambient (control) regimes in the field (Figure 6-4).  

There were no temperature treatments or cultivar differences for RECt in season 2. There 

were no differences between treatment regimes or cultivars for Abst for season 1 (2006) or 

season 3 (2007) at the Narrabri field site (Table 6-3).  
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Table 6-3 Probability of cultivar and temperature treatment main effects (control, tents) and cultivar 
by treatment interaction for relative electrical conductivity (%) and absorbance at 530 nm for cotton 
cultivars Sicot 53 and Sicala 45 grown under ambient (control) conditions and under the tents during 
seasons 1 (2006) and 3 (2007) at the Narrabri field site and in season 2 (2006) at the Texas field site, 
where  n.s. represents P>0.05 and – represents times for which measurements were not taken. 

Season Temperature treatment Cultivar Temperature treatment * Cultivar 

Relative electrical conductivity (%) 

1 0.014 n.s n.s 

2 n.s n.s n.s 

3 n.s n.s 0.042 

Relative cellular injury (%)  

1 - - - 

2 n.s. n.s. n.s. 

3 n.s. n.s. n.s. 

Absorbance at 530 nm  

1 n.s. n.s. n.s. 

2 - - - 

3 n.s n.s n.s 

Acquired high temperature tolerance  

1 - - - 

2 - - - 

3 n.s n.s n.s 
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Figure 6-4 Mean relative electrical conductivity (%) for cotton cultivars Sicot 53 and Sicala 45 grown 
under ambient (control) and high temperature (tent) conditions in the field in (a) season 1 (2006) and 
(c) season 3 (2007) at the Narrabri field site and (b) season 2 (2006) at the Texas field site. Vertical 
bars represented with the same letter are not different at P=0.05. The (c) vertical line indicates the 
l.s.d. value at P=0.05 for temperature treatment by cultivar interaction P=0.05. 
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Relationship between RECt or Abst and yield 

RECt and Abst means for 4 replicates of cultivars Sicot 53 and Sicala 45 under ambient 

(control) and tent regimes in the field during seasons 1 (2006) and 3 (2007) in Narrabri 

were fitted to a linear regression to determine whether there was any correlation with seed 

cotton yield under field conditions. A negative (P=0.033) (Table 6-4) relationship was 

found between RECt and yield for season 1 (Figure 6-5) and accounted for 90 % of the 

variation (Table 6-4). No relationship was found between RECt and yield for season 3 

(Table 6-4). There was no relationship between Abst and yield in seasons 1 or 3 (Table 

6-4). A relationship could not be determined for season 2 as seed cotton yield data from 

under the tents was misplaced. 

Table 6-4 Correlation between relative electrical conductivity (%) or absorbance at 530 nm and seed 
cotton yield (g m-2) under ambient (control) and high temperature (tent) regimes in the field in season 
1 (2006) and/or 3 (2007) in Narrabri, where n.s. represents P>0.05 in the F-tests. 

Season n Adjusted R2 Equation F test P value 

Relative electrical conductivity (%) 

1 16 0.90 y=1269.24-78.36x 0.033 

3 16 n.s. n.s. n.s. 

Absorbance at 530 nm 

1 16 n.s. n.s. n.s. 

3 16 n.s. n.s. n.s. 
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Figure 6-5 Correlation between relative electrical conductivity (%) and seed cotton yield cotton 
cultivars Sicot 53 and Sicala 45 grown under ambient (control) and tent regimes in season 1 (2006) 
and at Narrabri. Data presented are the treatment means of 4 replicates. 

6.3.3 Experiment 3 

A summary of main effects and interactions for RECt, RCIt, Abst and AHTTt for Sicot 53 

and Sicala 45 cotton plants at control (32 oC) or high (42 oC) temperatures in the growth 

cabinet and pooled for various sampling times (0, 1, 2, and 3 d) during the incubation is 

presented in Table 6-5.  



 116

Table 6-5 Probability of cultivar and cabinet incubation time (h) main effects and cultivar by 
incubation time interaction for relative electrical conductivity (%) and absorbance at 530 nm for 
cotton cultivars Sicot 53 and Sicala 45 grown under optimal (32 oC) or high (42 oC) temperature 
regimes in a temperature controlled growth cabinet at Narrabri, 2006 and subsequently incubated for 
2 h at optimal (25 oC), high (45 oC) or killing (90 oC) temperatures in a temperature controlled water 
bath, where n.s. represents F values where P>0.05. 

Assay Water bath temperature 

(oC) 

Cabinet Time 

(d) 

Cultivar Cabinet Time * 

Cultivar 

Control (32 oC) temperature growth cabinet 

RECt 25 n.s. n.s. n.s. 

RECt 45 <0.001 n.s. n.s. 

RCIt - <0.001 n.s. n.s. 

Abst 25 n.s. 0.022 n.s. 

Abst 45 0.014 n.s. n.s. 

AHTT t - n.s. n.s. n.s. 

High (42 oC) temperature growth cabinet 

RECt 25 0.002 n.s. n.s. 

RECt 45 0.006 0.018 0.019 

RCIt - n.s. n.s. 0.023 

Abst 25 0.030 n.s. n.s. 

Abst 45 0.001 <0.001 0.044 

AHTT t - <0.001 0.050 n.s. 

There was no cultivar differentiation for RECt of Sicot 53 and Sicala 45 leaf discs grown 

at optimum (32 oC) temperature regimes in the growth cabinet (Table 6-5). Subsequently, 

there were no cultivar differences for RCIt of Sicot 53 and Sicala 45 plants grown under 

optimal (32 oC) temperature regimes in the growth cabinet (Table 6-5). 

There was no cultivar differentiation for RECt of plants grown under high (42 oC) 

temperatures in the growth cabinet and in the absence of supplementary heat treatment in 

the water bath (Figure 6-6). The RECt of Sicala 45 plants was higher (P=0.019) (Table 

6-5) after both 2 and 3 days incubation at 42 oC in the growth cabinet and after 2 h 

incubation at high (45 oC) temperatures in the water bath (Figure 6-6). Similarly, the RCIt 

of Sicala 45 was also higher compared with Sicot 53 grown for 3 d at high (42 oC) 

temperatures in the growth cabinet (P=0.023) (Figure 6-6).  
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Figure 6-6 (a, b) Relative electrical conductivity (%) and (c) relative cellular injury (%) of cotton 
cultivars Sicot 53 and Sicala 45, grown at high (42 oC) temperatures in the growth cabinet and 
subsequently incubated for 2 h at (a) optimal (25 oC) and (b) high (45 oC) temperatures in a thermally 
controlled water bath. The (b, c) vertical lines represent the l.s.d. for growth cabinet incubation time 
by cultivar interaction at P=0.05. The asterisks (*) represent growth cabinet incubation times for 
which the mean relative electrical conductivity differs between the two cultivars at P<0.05.  
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The Abst for Sicala 45 was higher than Sicot 53 (P=0.022) (Table 6-5) grown at optimal 

(32 oC) temperatures in the growth cabinet (Figure 6-7). Supplementary incubation of leaf 

tissue for 2 h at 45 oC in a temperature controlled water bath did not generate cultivar 

differences in Abst and no cultivar differences were evident for the RCI under optimal (32 

oC) growth cabinet conditions (Table 6-5).  

For plants grown at high (42 oC) temperatures in the growth cabinet and incubated at 25 

oC in the water bath, Abst decreased (P=0.030) (Table 6-5) across the measurement period 

(Figure 6-7). For plants grown under high (42 oC) temperatures in the growth cabinet and 

incubated at 45 oC for 2 h in a temperature controlled water bath, Abst was higher 

(P=0.044) (Table 6-5) for Sicala 45 compared with Sicot 53  on days 1, 2 and 3 (Figure 

6-7). Subsequently, the AHTTt of Sicala 45 was higher (P=0.050) (Table 6-5) compared 

with Sicot 53 grown at high (42 oC) temperatures in the growth cabinet (Figure 6-7). The 

AHTTt of cotton plants grown at high (42 oC) temperatures in the growth cabinet 

increased (P<0.001) with increasing exposure to high temperatures (Figure 6-7). 
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Figure 6-7 (a, b) Absorbance at 530 nm and (c) acquired high temperature tolerance (AHTT) in leaf 
tissue of cotton cultivars Sicot 53 and Sicala 45, grown at  high (42 oC) temperatures in the growth 
cabinet and subsequently incubated for 2 h at (a) optimal (25 oC) and (b) high (45 oC) temperatures in 
a thermally controlled water bath. The (b, c) vertical lines represent the l.s.d. for growth cabinet 
incubation time by cultivar interaction at P=0.05. The asterisks (*) represent growth cabinet 
incubation times for which the mean absorbance differs between the two cultivars at P<0.05. 
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6.4 Discussion 
The relative electrical conductivity (RECt) and 2, 3, 5-triphenyltetrazolium chloride (Abst) 

assays were able to detect cultivar specific responses to high temperature stress and were 

able to distinguish between a relatively heat tolerant and non-tolerant genotype.  Cultivar 

differences in membrane integrity (RECt) were consistent for leaf material exposed to high 

temperature stresses derived under laboratory, growth cabinet and field conditions 

although cultivar differences in enzyme viability (Abst) were inconsistent across these 

environments.  

Utilising the RECt assay Sicot 53 had consistently lower conductivities than Sicala 45 

when leaf material was subjected to high temperature stress in water baths, in the growth 

cabinet and field.  When temperature differences were generated with water baths in the 

laboratory, RECt of field-grown leaf material increased with exposure to increasing 

temperatures and the rate of change was cultivar specific (Figure 6-1). Thermally 

dependent and sigmoidal increases in membrane leakage have been reported for sorghum 

(Sullivan 1971) and cowpea (Ismail and Hall 1999). The temperature at which 50 % 

leakage (T50) occurred was 5.5 oC lower for Sicala 45 compared to Sicot 53 (Figure 6-2) 

thereby indicating that Sicot 53 has a relatively higher level of heat tolerance. Cultivar 

specific differences in membrane leakage based on laboratory imposition of high 

temperature stress have been reported cotton exposed to cold (McDowell et al. 2007)  and 

heat (Ashraf et al. 1994; Bibi et al. 2008) stress but have not used the T50 calculation 

based on incubation temperature to quantify these cultivar differences effectively.  

Similarly, RECt increased for Sicala 45 leaf material incubated at high (42 oC) 

temperatures in the growth cabinet for a 2 or 3 d incubation period whereas the RECt of 

Sicot 53 leaf material remained relatively constant (Figure 6-6). Cultivar differences in 
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RECt have been determined for cotton (Bibi et al. 2008) and cowpea (Ismail and Hall 

1999) leaf material under high air temperatures in the growth cabinet. 

In attempting to improve the resolution of the RECt assay determination of relative 

cellular injury (RCIt) using temperature controlled water baths, cultivar differences in 

membrane integrity occurred at 3 d growth cabinet incubation time (Figure 6-6). Cultivar 

differences for RCIt have been determined for cotton (Ashraf et al. 1994; Rahman et al. 

2004), Brassica sp. (Hossain et al. 1995) and Kentucky bluegrass (Marcum 1998).  

The RECt assay was also conducted on material subjected to high temperature stress in the 

field to assess the resolution of the assay in identifying heat tolerance under field 

conditions. Exposure of leaf material to in-situ high temperature stress under tents 

increased electrolyte leakage from field grown leaf material (Figure 6-3). However, 

analysis of individual seasons indicated that RECt was only increased under the tents in 

seasons 1 (2006) and 3 (2007) in Narrabri and electrolyte leakage was higher for Sicala 45 

compared with Sicot 53 in season 3 only (Figure 6-4). Cultivar specificity for membrane 

integrity under high temperature stress in the field has been described (Ismail and Hall 

1999; Rahman et al. 2004) but not under in-situ high temperature stress or in the absence 

of supplementary high temperature treatment in the water bath. Furthermore, temperature 

treatment and cultivar differences were not detected for RCIt (Table 6-3), suggesting that 

this method was not as sensitive as RECt in this study. 

When RECt of leaf material grown under ambient (control) and tent field conditions was 

compared to yield, a strong negative relationship was determined between RECt and yield 

was determined only for season 1 (Figure 6-5). A relationship exists between RECt and 

yield in wheat (Blum and Ebercon 1981), beans (Schaff  et al. 1987), sorghum (Sullivan 

1971) and cotton (Rahman et al. 2004) but only occurs under stressed conditions (Blum 
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and Ebercon 1981; Chen et al. 1982; Rahman et al. 2004). This is the first study to show a 

relationship between RECt and yield under in-situ high temperature stress in the field as 

well as in the absence of supplementary heat stress in the laboratory.  

No relationship between RECt and yield was found in season 3 (Figure 6-5) which is 

similar to work on wheat (Shanahan et al. 1990) and soybeans (Martineau et al. 1979a). 

This suggests that the 7 h maximum exposure of plants to extreme high temperature (45 

oC) stress under the tents in season 3 (Table 3-6) may not have been sufficiently severe to 

induce changes in cell membrane permeability or that whole plant compensation to short 

term high temperature stress was sufficient to permit a recovery period during mild 

mornings or evenings, thus contributing to acquired thermotolerance (Larkindale et al. 

2005). This may be attributed to whole plant compensatory mechanisms such as 

mobilisation of protective heat shock proteins (Burke et al. 1985) or increased capacity for 

heat dissipation through transpiration (Taiz and Zeiger 2006) thus contributing to acquired 

thermotolerance (Larkindale et al. 2005).  

Unlike the RECt assay, cultivar differences for enzyme viability were not consistent across 

environments. Sicot 53 showed relatively high enzyme viability under high temperatures 

in the water bath whereas Sicala 45 had higher enzyme viability under high temperature 

stress and no cultivar differences were found under tents in the field.  

Dissimilar to RECt, Abst decreased with exposure to increasing temperatures in the water 

bath (Figure 6-1). Decreased enzyme viability in response to increasing exposure to high 

temperatures has been reported for cotton root tissue (McMichael and Burke 1994) and 

correlated to electrolyte leakage and membrane integrity (Schaff et al. 1987). Sicot 53 had 

a higher capacity for enzyme function under mild heat stress and Abst was 57 % higher at 

35 oC compared with Sicala 45 (Figure 6-1). Cultivar specificity for enzyme viability 
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using the Abst assay has been reported in cotton for prolonged exposure to simultaneous 

water deficit and heat stress (de Ronde and van der Mescht 1997) but not heat stress as an 

individual entity. However, the success in enzyme viability tests for detecting high 

temperature tolerance in wheat (Porter et al. 1995) and Phaseolus sp. (Schaff et al. 1987) 

and cold stress in cotton (McDowell et al. 2007) confer potential for development of this 

method for identifying heat tolerance in cotton cultivars.  

Genotypic differences in enzyme viability were also determined for plants grown under 

high temperature regimes in the growth cabinet which was similar to other research 

(Porter et al. 1995; Schaff et al. 1987). However, under high temperatures (42 oC) in the 

growth cabinet, Sicala 45 had higher absorbance and subsequently, higher AHTTt than 

Sicot 53 (Figure 6-7), thus suggesting higher thermotolerance. This is the reverse of 

findings for RECt results indicating that Sicot 53 has a higher level of thermotolerance 

compared with Sicala 45. The inability of Sicot 53 to maintain enzyme viability under 

high temperature stress in the growth cabinet may indicate the importance of an 

acclimation period for the development of superior stress tolerance by increased 

respiratory capacity and continuation of ATP production for plant growth and 

development under field conditions (cf. Atkin and Tjoelker 2003). Acclimation to high 

temperatures is evident in the growth cabinet study, as the acquired high temperature 

tolerance of Sicala 45 and Sicot 53 increased with increasing exposure (days) to high 

temperature stress. Furthermore, acclimation to heat stress in the field is often complicated 

by simultaneous exposure to radiation and drought stress, thus influencing cultivar 

rankings for stress tolerance (de Ronde and van der Mescht 1997).   

Temperature treatment and cultivar differences for enzyme viability were not detected 

using the Abst or AHTT assays for field grown leaf material (Table 6-3). Although 



 124

genotypic specificity has been widely reported for enzyme viability under high 

temperature stress in the water bath or growth cabinet (de Ronde and van der Mescht 

1997; Porter et al. 1995; Schaff et al. 1987), no reports have evaluated use of the Abst or 

AHTT assays for heat tolerance determination under field conditions. Furthermore, Abst 

did not correlate with yield under field conditions which is consistent with similar work on 

glasshouse grown beans (Schaff et al. 1987).  

Overall, the RECt assay generated sufficient resolution to identify consistent differences in 

genotypic heat tolerance in response to high temperature stress. The RECt assay has 

consistently shown that Sicot 53 is relatively more thermotolerant than Sicala 45. This 

trend is evident across a range of environments and water bath incubation temperatures 

and is consistent with data from field-based and growth cabinet experiments. This 

indicates that laboratory and growth cabinet based screening experiments may be 

employed to identify potential thermotolerance of cotton cultivars in the field. There is 

also a correlation between relative electrical conductivity and yield under hot field 

conditions (season 1). The reliability of this assay indicates potential for use as a screening 

tool for thermotolerance in the field. Hence, this assay may be employed to screen a large 

number of cotton cultivars for thermotolerance, provided that an adequate stress is used 

but this temperature is sufficiently low to distinguish between cultivars. 

Conversely, no consistent effects of temperature treatment or cultivar were evident for 

enzyme viability under high temperature stress using the Abst or AHTT assays. This 

indicates that the use of laboratory or growth cabinet screening programs for 

thermotolerance determination based on these assays should be approached with 

trepidation and requires substantial field validation before recommendations may be 

proposed for superior stress tolerant cultivars. Further research is required to develop this 
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assay as a screening tool for identification of in-field heat tolerance and the resolution of 

this method may be improved by incorporation of a larger number of genotypes and 

further validation of the assay under a greater range of field sites and over seasons. 

Alternative methods of generation of in-field heat stress may also aid in increasing the 

sensitivity of this method and approaches such as infra-red heat may be explored to deliver 

a constant stress (Nijs et al. 1996). 

The specific nature of single enzyme assays for heat tolerance determination may provide 

insufficient resolution for identification of subtle genotypic differences in response to high 

temperature stress and hence, a holistic approach may be more suitability for heat 

tolerance determination. Broad-spectrum screening assays such as RECt identify the 

symptoms of a range of biochemical and physical changes in the leaf tissue and hence, the 

decreased specificity of this assay may strengthen the resolution cultivar discrimination 

for heat tolerance. Conversely, identification of the underlying processes contribution to 

heat tolerance using gene profiling may highlight candidate genes for further development.  

6.5 Conclusion 
The RECt assay was able to identify Sicot 53 as relatively thermotolerant compared with 

Sicala 45 whereas the Abst assay was unable to determine cultivar resolution under high 

temperature stress in laboratory, growth cabinet and field environments consistently. 

Hence, the RECt assay has the most potential for development of a rapid and reliable assay 

for heat tolerance identification. However, inconsistencies in these assays highlight the 

importance of a holistic approach to stress tolerance determination. Assays for heat 

tolerance determination should be used in conjunction with gene-level measurements to 

determine the underlying basis of this tolerance and whole plant and leaf level 

measurements to determine whether the data from these assays are applicable to local 
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field-based production systems. These cultivars can then be incorporated into current 

breeding programs to ensure that cotton yields are maintained under high temperature 

stress. 
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Chapter 7 Screening for Cultivar Specific Thermotolerance 

at the Gene Level 

7.1 Introduction 
Molecular techniques provide insight as to the genetic and biochemical basis of plant 

functionality. Molecular tools such as microarray and quantitative real time 

polymerase chain reaction (qRT-PCR) can be used to identify the genes involved in 

both abiotic and biotic stresses.  

DNA microarray is a powerful tool for surveying the expression patterns of thousands 

of genes simultaneously. This enables rapid determination of differential gene 

expression between two RNA populations, thus providing a global and integrated 

analysis of biological processes in response to stress. Quantitative RT-PCR may be 

used for time course validation of gene expression under high temperature stress. 

Determination of cultivar specificity for specific genes or gene families involved in 

the heat stress response may provide a platform for directed breeding for increased 

crop stress tolerance (Ishitani et al. 2004; Zhang and Blumwald 2001). 

High temperature stress and acclimation to high temperatures induces a cascade of 

differential gene regulation in plants (Busch et al. 2005) and molecular techniques can 

be employed to determine the response of individual genes or general pathways to 

abiotic stress (Busch et al. 2005; Klok et al. 2002) particularly when no obvious 

phenotype is attributed to the stress response (Kennedy and Wilson 2004). While 

several genes contributing to thermotolerance have been identified in Arabidopsis 

(Alia et al. 1998; Gao et al. 2008; Larkindale et al. 2005; Lee et al. 1995; Lohmann et 

al. 2004; Schramm et al. 2006), there is little specific research on gene functionality 

in cotton (Dowd et al. 2004) under high temperature stress. 
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Interactions between plants and heat stress have been well characterised on a whole 

plant, physiological and biochemical level. Heat shock proteins play a primary role in 

the heat stress response and contribution to acquired thermotolerance (Busch et al. 

2005), however this response is often insufficient to protect plant functionality 

completely. Inhibition of cell metabolism may limit physiological processes such as 

photosynthesis and respiration completely and hence, energy availability is unable to 

meet demand for growth and development under such conditions (Kant et al. 2008). 

The underlying genetic basis of these processes however, remains largely unknown. 

Molecular studies have shown that regulation of genes associated with Rubisco 

activity underlies photosynthetic performance (DeRidder and Salvucci 2007). The 

activation state of Rubisco is the primary limitation to photosynthesis in cotton under 

stress (Salvucci and Crafts-Brandner 2004a) and is exacerbated by destabilisation of 

Rubisco activase, a chaperone for Rubisco, thus reducing yield potential under high 

temperature stress (DeRidder and Salvucci 2007; Salvucci and Crafts-Brandner 

2004c). Breeding programs targeting the genotype specific protection of Rubisco 

from deactivation and increasing the thermal stability of Rubisco activase under 

prolonged periods of stress may achieve superior thermotolerance and hence yield 

under field conditions in hot seasons (Salvucci 2008).  

An experiment was conducted to determine the effectiveness of molecular techniques 

for the determination of cultivar differences in gene expression under high 

temperature stress in the growth cabinet. The aim of this experiment was to identify 

cultivar specific thermotolerance using microarray technology and to quantify these 

differences using real-time polymerase chain reaction time course analysis under a 

controlled environment (growth cabinet). The hypothesis tested was that there are 

cultivar specific differences in gene expression under high temperature stress. 
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7.2 Materials and methods 

7.2.1 Temperature treatments 

Plants were established in the glasshouse and transferred to the growth cabinet for 

temperature treatments as previously described in Chapter 3.  

7.2.2 Plant sampling 

The third youngest fully expanded leaf of plants at the first square physiological age 

was sampled for all experiments. Four leaf tissue samples per treatment were 

collected at 0, 0.5, 1, 2, 3, 4 and 7 h after initiation of the high temperature stress. 

Time 0 samples were collected at 3 h into the photoperiod. For RNA preparations, 

whole leaves were excised at the junction of the lamina and petiole and immediately 

snap frozen in liquid nitrogen. Leaves were stored at -80 oC. To lyse cells and liberate 

ribonucleic acid (RNA), leaves were ground to a fine powder in liquid nitrogen in a 

pre-frozen mortar and pestle to maintain RNA integrity and a 0.1 g sub-sample was 

taken for small-scale RNA extraction in accordance with the protocol developed by 

Wan and Wilkins (1994). 

7.2.3 Quantitative real time-PCR 

The relative expression of the gene encoding 1,5-biphosphate carboxylase/oxygenase 

activase (Rubisco) alpha2 (GhRCAα2) was quantified by qRT-PCR analysis over a 7 

h period after the imposition of high temperature stress in the growth cabinet. This 

particular gene was chosen for real-time analysis as it has been described for cotton as 

a circadian, yet heat responsive gene (DeRidder and Salvucci 2007) but has not been 

determined for cultivar specificity. A difference in Rubisco activase expression 

between the optimal (32 oC) and high (42 oC) temperature growth cabinet is 

interpreted as the occurrence of heat stress. 
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Microarray analysis is relatively expensive and provides only a point in time 

determination of gene expression (Kennedy and Wilson 2004). Therefore, qRT-PCR 

was used to determine the optimal time point for comprehensive gene profiling using 

microarray analysis. This point was determined as the time point for which a heat 

stress by cultivar interaction was at a maximum. The process for mRNA extraction 

and gene expression determination using qRT-PCR is described below. 

Tissue homogenisation 

Cotton plants typically have a high level of secondary metabolites, phenolics, terpenes 

and polysaccharides that may either have similar properties to, or interfere with, 

nucleic acids, thereby severely limiting potential recovery of high quality RNA. 

Hence, total cellular RNA was selectively precipitated using a small scale, hot borate 

method specifically designed for extraction from cotton tissue to reduce interference 

from these compounds during the homogenization stage (Wan and Wilkins 1994). 

Although phenols are largely precipitated by polyvinylpryolidone (PVP) in the borate 

buffer, the alkaline conditions in conjunction with the presence of borate and 

dithiothreitol protect RNA from residual polyphenolic interference. For RNA 

isolation, all buffers and chemical solutions were diluted with 0.1% (v/v) 

diethylpyrocarbonate (DEPC) in distilled water and autoclaved before use to 

inactivate both protein and non-protein based ribonucleases. To supplement grinding, 

detergents (SDS and sodium deoxycholate) were included in the borate buffer 

solution to liberate cytoplasm and RNA through cell lysis and dissolution of 

membranes as well as broad scale protein denaturation.  

To aid the recovery of high quality RNA, 10 µL of proteinase K (25 mg/mL) and 10 

µL dithiothreitol (DTT) (154 mg/mL) were added to 1 mL of preheated (80 oC) borate 

buffer solution (Table 7-1) in a 2.0 mL microcentrifuge tube and mixed for 6 seconds 
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on a vortex mixer. The proteinase K facilitated degradation of endogenous enzymes 

during homogenisation, thereby limiting the activity of ribonucleases on RNA and 

subsequent formation of protein-phenolic compounds. DTT was added to reduce 

oxidation of phenolic compounds and inhibit ribonucleases (Wilkins and Smart 1996). 

Table 7-1 Borate buffer solution 

Borate buffer chemicals Concentration Manufacturer Chemical 

formula 

Borax: Disodium tetraborate 200 mM Chem-supply Pty Ltd, 

Gillman, SA, Australia 

Na2B4O7.10H2O 

Ethylene glycol-bix  

(2-aminoethyl-ester)-N,N,N',N'-

tetraacetic acid (EGTA) 

30 mM Sigma, St Louis, MO, USA C14H24N2O10 

Sodium dodecyl sulfate (SDS) 1% (w/v) Amresco, Solon, Ohio, USA C12H25NaO4S 

Sodium deoxycholate 1% (w/v) Sigma Aldrich C24H39NaO4 

Polyvinyl-pyrrolidone  

(PVP 40 000) 

2% (w/v) Sigma  

Diethyl pyrocarbonate (DEPC) 0.1% (v/v)   C6H10O5 

The hot buffer solution was transferred into the 2 mL microcentrifuge tube containing 

0.1 g frozen cotton leaf tissue and vortex mixed until the tissue was held in 

suspension. The tubes were stored at 42 oC in a water bath until all samples were 

prepared and then kept in mild agitation for 90 min at 42 oC on a G24 environmental 

incubator shaker (New Brunswick Scientific Co Inc, New Brunswick, NJ, USA) to 

facilitate carbohydrate removal and inhibition of polyphenolic interference (Wan and 

Wilkins 1994).  

RNA isolation 

To precipitate proteins, 200 µL cold 1M potassium chloride was added to the 

homogenised samples and kept for 1 h on ice. The tubes were centrifuged at 13000 g 

for 20 min at 4 oC in a 5415D centrifuge (Eppendorf). The supernatant was extracted 

and transferred to a new 2 mL microcentrifuge tube and RNA was precipitated 
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overnight (approximately 12 h) in an equivalent volume of 4M lithium chloride at 4 

oC for selective precipitation of RNA.  

The sample tubes were centrifuged at 13000 g for 20 min in the cold room and the 

pellet was washed 3 times with 1 mL cold 2M lithium chloride until the supernatant 

was clear. The pellet was resuspended with 450 µL DEPC water. Polysaccharides, 

residual proteins and pigments were precipitated with 50 µL cold 2M potassium 

acetate (pH 5.5) for 5 min on ice, thereby removing salt-insoluble detergents and 

polysaccharides. The tubes were centrifuged at 13000 g for 20 min and the 

supernatant was transferred to a new 2 mL microcentrifuge tube. Nucleic acids were 

precipitated for 10 min on ice in 1500 µL 95% ethanol. The tubes were centrifuged at 

13000 g, the supernatant discarded and the pellet left to air dry for 5 min. The pellet 

was re-suspended in 100 µL of 0.1% DEPC water and stored at -20 oC for further 

analysis. 

RNA concentration and quality analysis 

RNA concentration and protein contamination was measured on a on a Bio-lab ND-

1000 (Thermo Fisher Scientific, Waltham, MA, USA) at wavelengths of 260, 280 and 

230 nm against a 95% ethanol blank. For all samples, the 260/230 nm and 280/230 

nm ratios were above 2.0, indicating a minimal and acceptable level of protein and 

organics contamination (Wilkins and Smart 1996).  

The products of the total cellular RNA extraction were subjected to electrophoresis in 

a horizontal 1% agarose gel in a 50% tris-acetate (TAE) / distilled water buffer at 160 

volts for 20 minutes. For visualisation of migration, 1 µL loading dye was added to 5 

µL RNA extraction solutions and set in a 24 well comb. To fluoresce RNA under 

ultra-violet light, ethidium bromide (0.00001%) was added to the agarose gel. RNA 
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migration through the gel was compared to a Gene Ruler TM 1kb DNA ladder (0.5 

µg/µL) for effective comparison between samples. 

A sub-sample of extractions for microarray were denatured to remove any secondary 

structure and further analysed for quality on an Agilent 2100 Bioanalyser (Agilent, 

Santa Clara, CA, USA). For this analysis, a 1 µL RNA samples (200 to 500 ng 

RNA/µL) was loaded onto a pressurised RNA nano chip, containing 5 mL RNA 6000 

nano marker and run against a comparative volume of ladder solution. A RNA 

integrity number (RIN) score of 5.5 to 8.5 was observed for all tissue samples, 

indicating that all samples were of sufficient quality for microarray processing. 

Reverse transcription of RNA 

Ribulose 1,5-biphosphate carboxylase/oxygenase activase alpha2 (GhRCAα2) 

(DeRidder and Salvucci 2007) cDNA was obtained using the SuperScript III reverse 

transcriptase system as described by the manufacturer (Invitrogen Life Technologies). 

RNA 5 µg was diluted into 20 µL DEPC water in a 2.0 mL click cap microtube. 

Oligo-dT 3 µL (2 µg/µl, 23 mer dT with C/G/A at 3 end) was added and the tubes 

were vortexed and centrifuged in a butterfly centrifuge. To denature the RNA and 

facilitate binding to the oligo-dT, the sample tubes were incubated at 70 oC for 10 min 

in a PC-960C cooled thermal cycler (Corbett Research), and then transferred 

immediately to ice to prevent re-annealing. A reverse transcriptase master mix 

solution was prepared (Table 7-2) and 17 µL was added to each microtube (Table 

7-2). The tubes were incubated at 42 oC for 1 h in a cooled thermal cycler. The 

samples were stored at -20 oC until analysis. 
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Table 7-2 Reverse transcriptase solution 

Master mix solution Vol / PCR tube 

(µL) 

5 x 1st strand synthesis buffer 8 

0.1M DTT 4 

Deoxyribonucleotide triphosphate (dNTP) mix (containing 5nM each of 

deoxyadenosine triphosphate (dATP), deoxycytodine triphosphate (dCTP), 

deoxyguanosine triphosphate (dGTP) and deoxythymidine triphosphate (dTTP)) 

4 

Superscript TM II reverse transcriptase enzyme (200 U/ml) 1 

Quantitative Real-time Polymerase Chain Reaction  

A gene expression time series was developed using qRT-PCR. The qRT-PCR was 

performed on each sample with 3 technical replicates for both a 10 µM β-tubulin 

forward (5’-GAACATGATGTGGTGCTGC) and reverse (5’-

AGCTGTGAACTGCTCACTC) primer as a control to account for constitutive RNA 

expression in the leaf), and a GhRCAα1 forward (5’-

TGACGAAGTGAGGAAATGGAT) and reverse (5’-

TCAGCAACAAGCATGTTTCCA) gene of interest primer (Sigma-Genosys) 

(DeRidder and Salvucci 2007). For each sample, 15 µL cDNA (4 ng/µL) was diluted 

in 450 µL distilled water (autoclaved) and transferred to a 0.1 mL DNA and RNA free 

tube (Corbett Research) containing 15 µL buffer solution (Table 7-3). All samples 

were run in triplicate for 40 cycles which included a denaturing phase (95 oC held for 

15 secs), an annealing phase (60 oC held for 15 secs) and an elongation phase (72 oC 

held for 20 secs) in a Rotor-Gene 2000 real-time cycler (Corbett Research). For all 

measurements, expression of GhRCAα2 is relative to expression of the β-tubulin 

housekeeping gene (control), which should only be dependent on the amount of 

cDNA added to each reaction. Relative levels of gene expression for GhRCAα2 and 

β-tubulin were determined using comparative quantification to a standard solution. 
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Table 7-3 Buffer solution for qRT-PCR 

Reagent Volume (µL) 

10 x polymerase chain reaction buffer  2 

50 nM magnesium chloride 1.2 

5 mM deoxyribonucleotide triphosphate mix 0.8 

10 x SYBR ® green (in DMSO) 1 

10 µM forward primer 1 

10 µM reverse primer 1 

Platinum® Taq DNA polymerase 0.08 

 Distilled H2O (autoclaved) 7.92 

7.2.4 Microarray 

Cotton tissues sampled at 1 h after the onset of high temperature stress and at a 

comparative time in the optimal growth cabinet was analysed for broad-spectrum 

gene expression. Leaf tissue was stored at -80 oC and mRNA extraction, quality 

testing and cDNA generation was performed according to the above procedure. Array 

processing was performed by The Walter and Eliza Hall Institute of Medical Research 

at the Australian Genome Research Facility (AGRF), Parkville, Victoria, Australia. 

RNA quality was determined on an Agilent 2100 Bioanalyser (Agilent, Santa Clara, 

CA, USA). Relative expression for 24,132 genes was determined on an Affymetrix 

GeneChip system with scanner 3000 7G and autoloader.  

7.2.5 Data analysis 

Quantitative RT-PCR 

Two-way analysis of variance (ANOVA) (cultivar*cabinet time) was conducted for a 

time course analysis of relative expression of GhRCAα2 for cultivars Sicot 53 and 

Sicala 45 at various incubation times in the growth cabinet. Analysis was run 

separately for plants grown under optimal (32 oC, control) and high (42 oC) 

temperatures in the growth cabinet.  
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Two-way ANOVA (cultivar*cabinet temperature) was conducted to determine the 

relative expression of GhRCAα2 of Sicot 53 and Sicala 45 plants grown under 

optimal (32 oC) or high (42 oC) temperatures in the growth cabinet for each individual 

cabinet incubation time point.  

Microarray 

For all heat stress comparisons, relative expression refers to the expression of genes 

under high (42 oC) temperatures relative to expression under optimal (32 oC) 

temperatures in the growth cabinet, pooled for cultivars Sicot 53 and Sicala 45. An 

adjusted P value was generated to determine genes that were up or down regulated 

under high temperatures in the growth cabinet at P<0.05 (Smyth 2005).  

For all cultivar comparisons, the expression of genes for cultivar Sicala 45 or Sicot 53 

under high (42 oC) temperatures compared with expression under optimal (32 oC) 

temperatures in the growth cabinet for P<0.05 (Smyth 2005). Hence, relative 

expression refers to the expression of genes under high (42 oC) temperatures relative 

to expression under optimal (32 oC) temperatures in the growth cabinet for either 

Sicot 53 or Sicala 45. 

For visual representation of gene expression using MapMan software, a value of 1 on 

a log2 scale (2-fold) induction/repression limit was used to identify genes that were 

significantly induced or repressed by the temperature treatments at P<0.05.  All 

figures are presented on a log2 scale, where the red colour represents a decrease and 

the blue colour represents an increase in relative gene expression between 2 and -2 on 

a log2 scale. This represents a 4-fold difference between the temperature treatments or 

cultivars on a normal scale.  
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Transcript expression was graphed using MapMan 2.2.0 (Max-Planck-Institute for 

Molecular Plant Physiology). Due to limited information availability for the 

functionality of cotton genes, gene descriptions of Arabidopsis thaliana (The 

Arabidopsis Information Resource 2008) were used to supplement results for 

Gossypium hirsutum expression. For all Arabidopsis thaliana gene comparisons, the 

sequence of identical base pairs had a high degree of similarity with Gossypium 

genes, indicated by an E-value of <0.001 using a blast nucleotide comparison. This 

assumes that a similar base pair configuration indicates similar gene function in 

different plant species. 

7.3 Results 

7.3.1 Rubisco activase expression using qRT-PCR 

The relative expression of a gene associated with Rubisco activase (GhRCAα2) was 

determined for cultivars Sicot 53 and Sicala 45 under optimal (32 oC) and high (42 

oC) temperatures in the growth cabinet using qRT-PCR. The expression of GhRCAα2 

followed a diurnal decrease (P<0.001) (Table 7-4) under optimal (32 oC) and high (42 

oC) temperature regimes (Figure 7-1). The maximum steady-state transcription levels 

occurred at 0.5 h after the onset of the treatment period and subsequently decreased to 

a minimum within 3 h of initiation of the photoperiod (Figure 7-1).  

At optimal temperatures the relative expression of GhRCAα2 was higher (P=0.015) 

for Sicot 53 compared with Sicala 45 (Table 7-4) across the entire time course. 

Maximum differentiation between temperature treatments and cultivars occurred at 

1.0 h after initiation of the treatment period (Figure 7-1). At this time point, the 

relative expression of GhRCAα2 was higher (P=0.002) for Sicot 53 compared with 

Sicala 45 under high (42 oC) temperature regimes (Figure 7-1). Subsequently, samples 

taken from both cultivars at 1.0 h into the treatment period were taken for further 
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microarray analysis, on the basis of maximum cultivar differentiation under the high 

temperature treatment.  

Table 7-4 Probability of incubation time and cultivar treatment main effects and incubation time 
by cultivar interactions for relative expression of GhRCAα2 for cotton cultivars Sicot 53 and 
Sicala 45 grown under optimal (32 oC) and high (42 oC) temperature regimes in the growth 
cabinet at Narrabri, where n.s. represents not significant F test P values for P=0.05. 

Growth cabinet incubation 

temperature (oC) 

Incubation time Cultivar Cultivar * 

Incubation time 

32 <0.001 0.015 n.s. 

42 <0.001 n.s <0.001 
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Figure 7-1  Mean relative expression of GhRCAα2 for Sicot 53 and Sicala 45 grown in the growth 
cabinet at temperatures of (a) 32 oC or (b) 42 oC during the photoperiod. The (b) asterisks (*) 
represent growth cabinet incubation times for which the difference between the cultivar means 
exceeds the l.s.d. The (b) vertical line represents the l.s.d. for growth cabinet incubation time by 
cultivar interaction at P<0.05. 

7.3.2 Microarray 

Gene expression under high temperature stress 

The relative expression of 24133 genes was determined for cultivars Sicot 53 and 

Sicala 45 grown under optimal (32 oC) and high (42 oC) temperatures in the growth 
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cabinet using the Affymetrix gene chip. Individual genes were then assigned a gene 

group and sub-group according to function (Table 7-5). Data presented are pooled for 

cultivars Sicot 53 and Sicala 45 and indicate the relative expression of a particular 

gene under high (42 oC) temperatures and compared with expression at optimal (32 

oC) temperatures. 
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Table 7-5 Gene groups comprising MapMan determined gene sub-groups that are up- or down- 
regulated under high (42 oC) and compared with optimal (32 oC) temperatures in the growth 
cabinet  

Gene group Gene sub-group No. genes 

Electron flow and ATP production 90 

 Photosynthesis 15 

 Glycolysis 15 

 Oxidative pentose phosphate pathway 4 

 TCA cycle/ organic acid transformations 22 

 Mitochondrial electron transport/ ATP synthesis 5 

 Redox regulation 25 

 Chloride metabolism 4 

Carbohydrate metabolism 74 

 Major carbohydrate metabolism 15 

 Minor carbohydrate metabolism 19 

 Cell wall 40 

Lipid Metabolism 52 

Protein metabolism 612 

 RNA 189 

 DNA 59 

 Nucleotide metabolism 19 

 Nitrogen metabolism 3 

 Amino acid metabolism 50 

 Sulfur metabolism 8 

 Protein 284 

Secondary metabolism 96 

 Secondary metabolism 30 

 Hormone metabolism 63 

 Polyamine metabolism 2 

Stress  98 

 Biotic stress 12 

 Heat stress 57 

 Light stress 1 

 Cold stress 3 

 Drought stress 12 

 Touch/wounding stress 2 

 Unspecified stress 11 

Signaling & transport 186 

Cell & Development 128 

Not assigned/Miscellaneous 652 
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High (42 oC) temperatures induced a 2-fold up-regulation of 325 individual genes and 

down-regulation of 249 individual genes, compared to optimal (32 oC) temperatures. 

Although the majority of these genes had no assigned function (33%), protein 

metabolism (31%) comprised the largest proportion of gene groups affected by high 

(42 oC) temperatures in the growth cabinet (Figure 7-2).  

 

 

Figure 7-2 Gene groups that are up- or down-regulated under high (42 oC) and compared with 
optimal (32 oC) temperatures in the growth cabinet. 

 Stress genes contributed 5% of the overall heat response (Figure 7-2) and a summary 

of the genes related to abiotic and biotic stress are summarised in Figure 7-3. Heat 

stress contributed about 61% of total stress genes affected by the treatment (Figure 

7-3), primarily in the form of genes encoding heat shock proteins (Table 7-6), thus 
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indicating the mobilisation of a heat stress response in the plant tissue. Several 

individual genes with assigned functions associated with cold, drought and salt stress 

were differentially expressed under high (42 

cabinet (Figure 7-3). 

Figure 7-3 Distribution of biotic and abiotic stress genes, and relative expression of these genes 
for cultivars Sicot 53 and Sicala 45 grown under high (42 
temperatures in the growth cabinet. Red squares represent genes for which gene expressio
decreases, whilst blue squares represent genes for which expression is up
scale for plants grown under high (42 
optimal (32 oC) temperatures in the growth cabinet.
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decreases, whilst blue squares represent genes for which expression is up-regulated on a log
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indicating the mobilisation of a heat stress response in the plant tissue. Several 

individual genes with assigned functions associated with cold, drought and salt stress 

) temperature treatment in the growth 

 

of biotic and abiotic stress genes, and relative expression of these genes 
C) compared with optimal (32 oC) 

temperatures in the growth cabinet. Red squares represent genes for which gene expression 
regulated on a log2 

C) temperatures compared with plants grown under 

Heat stress

61%



 

Table 7-6 Relative expression of selected stress genes up-regulated for cultivars Sicot 53 and Sicala 45 under high (42 oC) and optimal (32 oC) temperatures in the 
growth cabinet. 

Pathway Public ID Relative 

expression 

Adjusted P 

value 

Arabidopsis hit  Arabidopsis hit description E-Value 

Drought/salt stress DT455898 1.643 1.33E-02 At4g16390.1 chloroplastic RNA-binding protein P67, putative 2.15E-140 

Heat stress CO070151 1.77 1.46E-02 At5g62020.1 heat shock transcription factor 6 (HSF6) 1.16E-75 

Heat stress CO125371 1.805 2.31E-02 At4g24280.1 heat shock protein cpHsc70-1  2.63E-107 

Heat stress AW186892 2.635 2.71E-03 At4g24190.1 shepherd (SHD) 1.14E-107 

Heat stress CA992849 2.956 1.28E-03 At3g44110.1 DnaJ protein AtJ3 1.54E-170 

Heat stress DT545357 3.428 3.47E-04 At4g25200.1 mitochondrion-localized small heat shock protein  4.99E-62 

Heat stress DW496991.1 4.792 6.07E-03 At1g54050.1 heat shock hsp20 protein family 2.77E-33 

Heat stress CO132723 4.901 1.25E-05 At4g11660.1 heat shock factor protein 7 (HSF7)  1.05E-57 

Heat stress DT050385 4.981 6.49E-06 At3g23990.1 chaperonin (CPN60/HSP60) 1.35E-10 

Heat stress DT456116 8.919 5.54E-04 At2g26150.1 heat shock transcription factor family 2.66E-72 

Heat stress DT467180 9.761 2.25E-05 At5g12020.1 class II heat shock protein 1.12E-35 

Heat stress DW513189.1 15.343 1.80E-04 At4g25200.1 mitochondrion-localized small heat shock protein  2.47E-59 

Heat stress DT049773 22.439 1.38E-05 At2g32120.2 heat shock protein hsp70t-2  6.89E-45 

Heat stress DW503063.1 28.87 1.17E-04 At5g52640.1 heat shock protein 81-1  2.42E-112 

Heat stress DR455451 30.145 2.24E-03 At4g27670.1 small heat shock protein, chloroplast precursor (HSP21) 8.71E-64 

Heat stress DW517704.1 35.33 1.84E-04 At4g10250.1 endomembrane-localized small heat shock protein 2.11E-15 

Heat stress CA992719 38.989 1.19E-04 At4g10250.1 endomembrane-localized small heat shock protein 3.92E-31 

Heat stress DW503697.1 83.99 7.78E-07 At1g07400.1 heat shock protein  1.40E-49 

Light stress DW505008.1 1.817 2.22E-02 At5g11580.1 expressed protein  8.90E-80 

144 
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Changes in genes involved in metabolism 

Overall metabolism was up-regulated following 1 h heat stress at 42 oC in the growth 

cabinet (Figure 7-4). Genes involved in the metabolism of starch and sucrose, lipids 

and amino acids and subsequently cell wall synthesis related genes were strongly 

down-regulated (Table 7-8). Genes involved in electron transport from the 

tricarboxylic acid (TCA) cycle and through the mitochondria were down-regulated 

(Table 7-8), whilst genes involved in Rubisco expression were up-regulated under 

heat stress (Table 7-7). 

Several genes involved in mitochondrial electron transport were affected by high 

temperature stress in the growth cabinet (Figure 7-4). Although genes encoding 

transport proteins at complex I and II were induced, the majority of genes affected 

were down-regulated in response to heat stress (Table 7-8). Several genes involved in 

protein-mediated metabolite transport were down-regulated under heat stress (Table 

7-8). Multiple genes encoding electron transfer from complex III to complex IV, via 

cytochrome C were down-regulated under high temperatures (Table 7-8). Genes 

associated with uncoupling proteins, responsible for the movement of H+ across the 

membrane were also down-regulated (Figure 7-4).  

Multiple genes involved in the photosynthetic pathway were differentially regulated 

in response to high temperature stress in the growth cabinet (Figure 7-4). Several 

genes involved in the regulation and expression of Rubisco were strongly up-

regulated (P<0.001) under high temperature stress in the growth cabinet as well as a 

gene involved in calcium ion binding (Table 7-7). A glyceraldehyde-3-phosphate 

dehydrogenase gene was down-regulated (P<0.001) under high temperature stress in 

the growth cabinet (Table 7-8).  



 

Figure 7-4 Relative expression of metabolism genes for cultivars Sicot 53 and Sicala 45 grown 
under optimal (32 oC) and high (42 
represent genes for which gene expression decreased, whilst blue squares represent genes for 
which expression was up-regulated on a log
temperatures, compared with p
cabinet. 

Relative expression of metabolism genes for cultivars Sicot 53 and Sicala 45 grown 
C) and high (42 oC) temperatures in the growth cabinet. Red squares 

represent genes for which gene expression decreased, whilst blue squares represent genes for 
regulated on a log2 scale for plants grown under high (42 

temperatures, compared with plants grown under optimal (32 oC) temperatures in the growth 
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Relative expression of metabolism genes for cultivars Sicot 53 and Sicala 45 grown 
temperatures in the growth cabinet. Red squares 

represent genes for which gene expression decreased, whilst blue squares represent genes for 
scale for plants grown under high (42 oC) 

C) temperatures in the growth 



 

Table 7-7 Relative expression of metabolism genes involved in energy generation and transfer, up-regulated under high (42 oC) and compared with optimal (32 oC) 
temperatures in the growth cabinet for cultivars Sicot 53 and Sicala 45. 

Representative 

public ID 

Relative 

expression 

Adjusted  

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

CO072814 2.449 3.50E-03 At2g28000.1 RuBisCO subunit binding-protein alpha subunit/60 kDa chaperonin alpha subunit 1.67E-154 

CO091076 1.558 2.83E-02 At5g17400.1 mitochondrial ADP, ATP carrier protein 1.85E-34 

CO121719 2.455 1.37E-02 At2g28000.1 RuBisCO subunit binding-protein alpha subunit/60 kDa chaperonin alpha subunit 3.75E-107 

DN800322 2.237 1.20E-02 At1g06680.1 Oxygen-evolving enhancer protein 2; calcium ion binding 5.11E-85 

DN800322 2.237 1.20E-02 At1g06680.1 photosystem II oxygen-evolving complex 23 (OEC23) 5.11E-85 

DN817738 1.4 4.75E-02 At4g20130.1 expressed protein 4.62E-49 

DR458096 2.003 4.73E-04 At2g28000.1 ATP binding protein binding 0.00 

DT051416 1.599 2.29E-02 At1g07890.2 ascorbate peroxidase, putative (APX) 2.26E-101 

DT456151 1.823 2.53E-02 At2g43400.1 electron transfer flavo protein ubiquinone oxidoreductase -related   5.68E-66 

DV849478 3.338 2.27E-04 At2g28000.1 RuBisCO subunit binding-protein alpha subunit/60 kDa chaperonin alpha subunit 8.87E-23 

DW226042.1 1.543 9.27E-03 At5g14590.1 isocitrate dehydrogenase [NADP+] 2.94E-33 

DW497212.1 1.798 3.46E-02 At1g03600.1 photosystem II protein family 2.14E-43 

DW508175.1 1.742 6.83E-03 At1g75270.1 dehydroascorbate reductase 1.75E-32 

DW509246.1 1.241 4.12E-02 At1g63460.1 glutathione peroxidase 7.62E-70 
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Table 7-8 Relative expression of genes involved in energy generation and transfer, down-regulated under high (42 oC) and compared with optimal (32 oC) 
temperatures in the growth cabinet for cultivars Sicot 53 and Sicala 45. 

Representative 

public ID 

Relative 

expression 

Adjusted  

P value 

Arabidopsis hit Arabidopsis hit description E-value 

AI729300 0.244 3.35E-03 At1g02190.1 CER1 protein 6.14E-67 

AI730914 0.555 3.99E-02 At2g21250.1 mannose 6-phosphate reductase (NADPH-dependent) 7.52E-81 

AI731438 0.475 1.89E-03 At5g58970.1 uncoupling protein (AtUCP2)  1.58E-101 

BQ412199 0.631 9.94E-03 At5g19760.1 mitochondrial 2-oxoglutarate/malate translocator 2.42E-125 

CA992949 0.546 1.08E-02 At2g22500.1 mitochondrial carrier protein family  3.32E-113 

CO127818 0.481 3.02E-02 At5g14040.1 mitochondrial phosphate transporter  1.69E-105 

DT047184 0.492 2.68E-02 At3g59480.1 fructokinase 1.84E-58 

DT463008 0.197 1.52E-02 At3g22890.1 ATP sulfurylase -related  3.97E-37 

DT463094 0.508 2.25E-02 At5g53460.1 glutamate synthase [NADH], chloroplast 2.05E-169 

DV848944 0.344 1.68E-01 At1g42970.1 glyceraldehyde-3-phosphate dehydrogenase B subunit  0.00 

DW233179.1 0.675 2.32E-02 At3g62650.1 expressed protein putative mitochondrial carrier protein  9.79E-25 

DW493894.1 0.491 1.26E-02 At5g53580.1 aldo/keto reductase family  5.76E-113 

DW496260.1 0.28 2.62E-04 At2g40835.1 4-alpha-glucanotransferase -related  1.08E-24 

DW500449.1 0.639 6.91E-02 At4g10040.1 cytochrome c 9.94E-56 

DW510782.1 0.565 2.31E-02 At4g34200.1 D-3-phosphoglycerate dehydrogenase (3-PGDH) 6.22E-54 

DW512717.1 0.641 6.70E-02 At2g29990.1 NADH dehydrogenase family 2.88E-91 
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Cultivar differences for overall gene expression 

The relative expression of genes for Sicot 53 or Sicala 45 under high (42 oC) 

temperatures, compared with optimal (32 oC) temperatures in the growth cabinet are 

summarised for gene sub-groups (Table 7-5) and are listed individually for Sicot 53 

(Figure 7-5) and for Sicala 45 (Figure 7-5). The total number of genes that were 

differentially expressed under the two temperature regimes was higher for Sicala 45 

compared with Sicot 53. A number of heat-associated stress genes were up-regulated 

in both cultivars under high temperature stress in the growth cabinet. These genes 

consisted of predominantly heat shock proteins and were higher in number for Sicala 

45 compared with Sicot 53. Multiple genes involved in carbohydrate, lipid and 

secondary metabolism and transport, as well as genes involved in RNA, DNA and 

nucleotide synthesis were strongly down-regulated for Sicala 45 under heat stress. 

Although these genes may indirectly influence the photosynthetic and mitochondrial 

electron transport pathways, no transcripts directly involved with these pathways were 

cultivar specific in response to high temperature stress. 



 

Figure 7-5 Relative expression of
temperatures in the growth cabinet. Red squares represent genes for which gene expression 
decreased, whilst blue squares represent genes for which expression increased on a log
plants grown under high (42 
oC) temperatures in the growth cabinet
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Table 7-9 Selected genes for Sicot 53 that are up-regulated or down-regulated in response to heat stress in the growth cabinet 

Pathway Public ID Relative 

expression 

P value Arabidopsis hit  Description E-Value 

Up-regulated genes 

Stress DT046994 4.81 4.69E-02 At3g16050.1 ethylene-inducible protein 5.09E-24 

Stress DT048069 2.52 4.69E-02 At2g41540.2 glycerol-3-phosphate dehydrogenase  6.12E-19 

Stress DW506829.1 3.41 4.45E-02 At5g65260.1 RNA recognition motif (RRM)  1.68E-90 

Down-regulated genes 

Stress DT054070 0.25 4.57E-02 At2g21660.2 glycine-rich RNA-binding protein  3.74E-38 

Stress DT461768 0.26 4.45E-02 At2g21660.2 glycine-rich RNA-binding protein  2.52E-36 

Protein metabolism CA993457 0.06 4.57E-02 At5g54770.1 thiazole biosynthetic enzyme precursor  3.59E-142 
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Table 7-10 Selected genes for Sicala 45 that are up-regulated or down-regulated under high temperature stress in the growth cabinet 

Pathways Public ID Relative 

expression 

P value Arabidopsis 

Hit 

Description E-Value 

Up-regulated genes       

Stress DT047015 3.29 3.97E-02 At5g20720.2 chloroplast Cpn21 protein  1.00E-45 

Stress DT049773 25.71 4.23E-02 At2g32120.2 heat shock protein hsp70t-2  6.89E-45 

Stress DV850132 15.42 4.44E-02 At5g47220.1 ethylene responsive element binding factor 2  7.88E-43 

Protein metabolism DR454255 4.14 3.95E-02 At1g80160.1 glyoxalase family protein  1.02E-63 

Protein metabolism CA992712 7.12 3.32E-02 At5g52640.1 heat shock protein 81-1  8.99E-66 

Protein metabolism DW503697.1 96.75 1.54E-02 At1g07400.1 heat shock protein, putative  1.40E-49 

Protein metabolism DR458062 2.28 3.32E-02 At5g27620.1 cyclin family  5.01E-37 

Protein metabolism CO132723 5.02 1.99E-02 At4g11660.1 heat shock factor protein 7  1.05E-57 

Secondary metabolism CA992719 56.33 3.93E-02 At4g10250.1 endomembrane-localised small heat shock protein  3.92E-31 

Secondary metabolism DW505128.1 6.98 4.44E-02 At4g27670.1 small heat shock protein, chloroplast precursor  1.96E-25 

Down-regulated genes       

Stress CO076413 0.04 1.99E-02 At5g54770.1 thiazole biosynthetic enzyme precursor  2.81E-140 

Stress DT461768 0.23 4.05E-02 At2g21660.2 glycine-rich RNA-binding protein  2.52E-36 

Protein metabolism DW224339.1 0.24 4.03E-02 At5g27150.1 sodium proton exchanger (NHX1)  8.76E-15 

Protein metabolism DN799904 0.47 4.10E-02 At4g03230.1 receptor kinase -related   4.75E-101 

Protein metabolism DW225422.1 0.3 4.44E-02 At1g17345.1 auxin- (indole-3-acetic acid-) induced protein  1.60E-25 

Cell & Development DW485677.1 0.47 4.10E-02 At2g18960.1 ATPase 1, plasma membrane-type  0.00 

Secondary metabolism DW513352.1 0.49 4.44E-02 At1g50430.1 sterol delta-7 reductase  2.93E-45 

Secondary metabolism DW503233.1 0.47 4.03E-02 At3g02750.1 protein phosphatase 2C (PP2C)  2.62E-114 

Signaling & transport DT048308 0.29 4.33E-02 At2g40840.1 glycosyl hydrolase family 77  2.73E-20 
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7.4 Discussion 
 
Cultivar differences in gene expression were detected under high temperatures in the 

growth cabinet using microarray and validated using qRT-PCR. Differential 

expression of genes associated with metabolism, photosynthesis and mitochondrial 

electron transport between cultivars Sicot 53 and Sicala 45 grown under high 

temperatures in the growth cabinet indicate the presence of cultivar-specific gene 

expression in response to heat stress. Furthermore, the number of genes differentially 

expressed under high temperatures for Sicala 45 (Figure 7-5) was greater compared 

with Sicot 53 (Figure 7-5), thereby indicating a more severe heat stress response and 

may partially explain decreased photosynthesis and electron transport rate (Chapter 5) 

and enzyme viability and cell structural integrity (Chapter 6) under high temperature 

stress in the growth cabinet. These genes may be then validated using qRT-PCR and 

then assessed under stress conditions in the field to determine for suitability for 

targeting in directed breeding programs for enhanced stress tolerance. 

Using microarray analysis, a high number of genes associated with heat-shock protein 

expression were found to be up-regulated for Sicala 45 under high temperatures in the 

growth cabinet (Figure 7-5). This potentially indicates a higher level of stress 

compared to Sicot 53 and a greater need for up-regulation of stress-mediating 

biochemical and physiological responses, particularly protection proteins. This 

cultivar specificity for heat shock protein generation under heat stress was also 

described for cotton by de Ronde et al (1993), who used a protein-extraction method. 

Strong down regulation of several genes involved in carbohydrate and lipid 

metabolism for Sicala 45 (Table 7-10) suggests that these protective mechanisms are 

not sufficient to protect and maintain energy production (cf. Kant et al. 2008; Taiz 
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and Zeiger 2006).  Cultivar differences in gene expression have been found for salt 

stress in rice (Sahi et al. 2003), drought stress in sorghum (Sharma et al. 2006) and 

heat stress in fescue (Zhang et al. 2005) however, there have been no studies 

evaluating cultivar differences in global gene expression under high temperature 

stress in the growth cabinet. 

Verification of Rubisco activase (GhRCAα2) expression using qRT-PCR indicates 

that this gene is down-regulated to a greater degree for Sicala 45 than Sicot 53 under 

high temperatures (42 oC) in the growth cabinet (Figure 7-1) and may limit 

photosynthesis (Demirevska-Kepova et al. 2005; Kim and Portis 2005; Kurek et al. 

2007; Salvucci and Crafts-Brandner 2004a). Rubisco activase transcript levels were 

higher for Sicot 53 compared with Sicala 45 plants under optimal (32 oC) and high 

(42 oC) temperatures in the growth cabinet (Figure 7-1). Relative expression of 

Rubisco activase in Sicala 45 leaf tissue decreased under high temperature conditions 

after 0.5 h incubation and this decrease was in addition to a natural diurnal down-

regulation in expression of Rubisco activase in response to photoperiod (DeRidder 

and Salvucci 2007). This suggests severe protein denaturation and subsequent 

decrease in overall plant function, thus contributing to a relatively low level of 

thermotolerance. Cultivar specificity for Rubisco activity has been reported in field 

cotton (Pettigrew and Turley 1998) and  Zhou et al. (2006) found that Rubisco 

content and activity of cucumber cultivar JY4 decreased with chilling stress, whereas 

cultivar JCH3 was unaffected. Conversely, the relative expression of Rubisco activase 

was not different in the leaf tissue of Sicot 53 plants after 1 h incubation at optimal 

(32 oC) and high temperature (42 oC) conditions (Figure 7-1). This indicates that Sicot 

53 was able to maintain enzyme function under short term (1 h) high temperature 

stress, interpreted as a high level of thermotolerance. Rubisco activase expression 
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decreased to a minimum at 3 h into the treatment period however, this decrease was 

comparable to Sicala 45 and indicates a natural diurnal decline associated with the 

photoperiod and is fully reversible after return to optimal temperatures and is thus is 

not an indicator of heat tolerance (DeRidder and Salvucci 2007).  

Assuming that a decrease in gene expression associated with Rubisco activase activity 

is limiting to photosynthesis, decreased expression for Sicala 45 compared with Sicot 

53 supports the results in Chapter 5 whereby the photosynthetic rate was lower for 

Sicala 45 compared with Sicot 53 for leaf material exposed to high temperatures 

under the tents in the field and growth cabinets. However electron transport rate also 

decreased under high temperatures in the growth cabinet and under the tents in the 

field and to a greater degree for Sicala 45 compared with Sicot 53. Hence, validation 

of genes associated with electron transport rate may also identify underlying 

processes contributing to photosynthetic capacity under high temperature stress. 

Several genes involved in the mitochondrial electron transport chain were also down 

regulated under high (42 oC) temperatures in the growth cabinet (Table 7-8) and these 

genes may be candidates for verification using qRT-PCR for identification of cultivar 

specific heat tolerance. Genes involved in metabolite transport, electron transfer from 

complex III to complex IV via cytochrome C and uncoupling proteins, responsible for 

the movement of H+ ions across the membrane (Table 7-8) were down regulated 

under high temperatures in the growth cabinet thus potentially limiting limit 

mitochondrial electron transport and plant respiratory potential (Bartoli et al. 2005). 

Decreased expression of genes associated with mitochondrial respiration supports 

under high temperatures in the growth cabinet supports the findings in Chapter 6 

where the 2,3,5-triphenyltetrazolium (Abst) assay showed decreased mitochondrial 

enzyme activity and respiratory potential under high temperatures in the field and in 
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the growth cabinet. Cytochrome C is a moderately soluble protein that is loosely 

attached to the plasma membrane (Taiz and Zeiger 2006) and may shift out of 

position with increasing membrane fluidity under heat stress. Hence, decreased 

expression of genes associated with cytochrome C may be indicative of membrane 

damage was determined to be greater for Sicala 45 compared with Sicot 53 under high 

temperatures in the growth cabinet and under the tents in the field, using the 

membrane integrity assay (Chapter 6).  

The expression of mitochondria-localised heat shock proteins was up-regulated under 

high temperature stress in the growth cabinet (Table 7-7). Salvucci (2008) suggested 

that this may provide protection against degradation of this electron transport pathway 

and photosynthesis and may warrant further validation and investigation as a potential 

source of cultivar specific protection against the deleterious effects of heat stress in 

cotton cultivars. 

Genes associated with metabolism, development, electron flow and ATP production 

that are differentially expressed under high temperatures in the growth cabinet (Figure 

7-2) may be involved in the expression of cultivar specific heat tolerance in cotton. 

However, these candidate genes require verification by qRT-PCR as it is a more 

specific and sensitive measure of gene expression than microarray determination (cf. 

Dowd et al. 2004). Quantitative RT-PCR is sufficiently sensitive to resolve subtle 

cultivar differences in gene expression which may be overshadowed by large 

temperature treatment differences when using microarray gene profiling. Although 

time series analysis of candidate genes may provide an overall picture of single gene 

regulation in response to heat stress, evaluation of a broader genotypic range 

including G. hirsutum and G. barbadense cultivars for gene expression under high 
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temperature stress may implicate a greater number of genes involved in heat 

tolerance. 

7.5  Conclusion 
Up-regulation of genes associated with protection against heat stress and down-

regulation of genes associated with plant function under high temperatures in the 

growth cabinet indicated that Sicala 45 may be relatively less heat tolerant than Sicot 

53. Validation of a Rubisco activase (GhRCAα2) gene indicated that Sicala 45 plants 

may have lower potential capacity for photosynthesis under high temperature stress in 

the growth cabinet compared with Sicot 53.  

Gene determination methods such as microarray and qRT-PCR quantification are 

repeatable and rapid, with a short lag time between multi-generational analyses and 

thus make these approaches appealing for genotypic screening for thermotolerance. 

However, stress responses in variable environments involve a cascade of biochemical 

and physiological responses (Chinnusamy et al. 2005; Larkindale et al. 2005) and 

multi-gene interactions under stress can be oversimplified or ignored (Humphreys and 

Humphreys 2005).  In addition plant performance in the field is largely dependent on 

seasonal environmental variables and seasonally-dependant adaptation to long term 

stress which are not generally represented in growth cabinet experiments 

(Chinnusamy et al. 2005).  These issues therefore highlight the importance of global 

approaches to detection of stress tolerance. Hence, to account for genotype by 

environment interactions, thermally responsive gene expression should also be 

extended from growth cabinet studies to field studies.   

Significant opportunities exist to support molecular assisted breeding programs with 

activities that undertake physiological and yield-based characterisation of specific 
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genotypic thermotolerance. It would be beneficial to identify a range of cultivar 

specific thermally responsive genes using molecular techniques and then exploit plant 

physiology to explain the biological significance of these data. This issue is discussed 

in more detail in Chapter 8. 
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Chapter 8 General Discussion 

High temperature stress adversely affects multiple physiological and biochemical 

pathways that contribute to growth and development and ultimately limit yield. There is 

strong interest in the development of stress tolerant cotton cultivars that can maintain high 

yield and fibre quality under adverse conditions in the field. Although breeding programs 

have generally focused on yield as a cultivar selection tool, there exists potential for the 

development of stress screening tools specifically for the identification of heat tolerant 

cotton cultivars.  

This study was the first step in using a multi-scale approach to understand the performance 

of cultivars in response to high temperature stress in the growth cabinet and in the field. 

Although physiological and biochemical tools for determining high temperature tolerance 

have been described for plants grown under glasshouse conditions, there has been little 

extension of this knowledge to field conditions. Complex interactions between 

environmental variables, agronomic management and individual plant responses indicate 

that mechanisms contributing to high temperature tolerance in the field may not be 

identified in growth cabinet measurements and assays (Marcum 1998). Furthermore, there 

has been little research as to whether differences in thermotolerance that are identified 

through these methods actually contribute to yield.  

This chapter discusses how understanding of plant responses to high temperature stress 

can be used to develop plant-based screening tools for determining heat tolerance from a 

crop, whole plant, leaf, cell and single gene perspective, by utilising a range of agronomic, 

physiological, biochemical and molecular tools under growth cabinet and field conditions.  

The primary goal of this thesis was to evaluate screening tools for the identification of 

cultivar specific heat tolerance. This dissertation used multi-level analysis to build a body 
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of evidence using a range of approaches to indicate potential cultivar specific tolerance of 

heat stress, rather than provide a ‘silver bullet’. As such, it is important to consider this 

thesis in its entirety, rather than consider specific measurements or, seasons in isolation 

when interpreting results. 

Current literature suggests that there is great emphasis on the development of genocentric 

research aimed at identifying specific genes or gene groups that contribute to heat stress 

tolerance (Alia et al. 1998; DeRidder and Salvucci 2007; Gao et al. 2008; Larkindale et al. 

2005; Lee et al. 1995; Lohmann et al. 2004; Schramm et al. 2006). Similarly, stress 

tolerance determination through quantification of a single enzyme, cell integrity or 

physiological trait in isolation has been widely used to ascertain cultivar specific 

tolerance. However, these approaches may trivialise the complexity of whole plant and 

environment interactions (Sinclair and Purcell 2005). Caution should be exercised when 

using a ‘bottom up’ approach to stress tolerance research as although large treatment 

differences may be determined at a genetic or leaf level, it is likely that the magnitude of 

these differences diminishes at each increasing level of plant function due to initiation of 

alternate biological compensatory pathways or confounding influence of environment to a 

point where translated differences in yield may be negligible. Hence, it is important to 

consider higher level plant function and whole plant systems biology before interpretation 

of results arising from detailed molecular, biochemical and physiological measurements as 

an indicator of potential benefits relevant to actual agricultural production systems (Boote 

and Sinclair 2006). 

Thus the framework of this thesis firstly utilised a ‘top down’ approach to identify 

differences in genotypes with known and differing levels of heat tolerance (Figure 8-1). 

By implementing this approach, the underlying physiological, biochemical and genetic 
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factors contributing to actual differences in cultivar yield under varying thermal 

environments were explored. This approach identified cultivar differences at lower levels 

of plant function which may be indicative of, or which may partially account for actual 

differences in yield, subsequently rendering them significant to actual production system. 

This approach may also highlight cultivar differences which have the potential to affect 

other factors contributing to yield, such as cultivar specific water flux permitting 

decreased irrigation frequency in warm or hot seasons. The ‘top down’ approach enabled 

identification of multiple opportunities at different levels of plant function for the 

development of tools to identify cultivar specific heat tolerance. Secondly, this ‘top down 

approach’ provided a framework for ‘bottom up’ approach including validation under a 

range of environments and subsequent confirmation of tolerance for a range of cultivars. 

 

 

Figure 8-1 The ‘top-down’ and ‘bottom-up’ approach for determination of cultivar specific heat 
tolerance and validation under a range of environments for a range of genotypes 
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Utilising this approach, Sicot 53 was the best performing cultivar for photosynthesis and 

electron transport (Chapter 5) and relative electrical conductivity (Chapter 6) under the 

tents which generated on average a 1.7 oC increase in temperature and also under high 

temperatures in the growth cabinet. Furthermore, gene profiling indicated that a higher 

proportion of total genes, including genes involved in heat shock protein expression, 

metabolism and cell development were affected by high temperature stress in Sicala 45 

compared with Sicot 53 (Chapter 7). This may indicate a higher degree of stress in Sicala 

45 plants and hence more severe mobilisation of compensatory pathways. Consistent 

cultivar differences at a whole plant, leaf, cell and single gene level indicate Sicot 53 has a 

higher capacity for thermotolerance.  

Pooled analysis for photosynthesis across the 3 seasons indicated that Sicot 53 was the 

better performing cultivar under high temperatures in the field (Figure 5-1) and expression 

quantification using qRT-PCR indicates that this cultivar specificity may be partially 

attributed to variable regulation of genes involved in Rubisco activase activity (Figure 

7-1). Stomatal conductance and transpiration rate were higher for Sicala 45 compared with 

Sicot 53 but this is most likely attributed to higher capacity for heat avoidance and may 

not confer heat tolerance (Lu et al. 1998) or determine photosynthetic capacity. However, 

similar photosynthetic and electron transport capacity under field and growth cabinet 

conditions indicate that electron transport rate may also be a primary limitation to 

photosynthesis under high temperatures. Furthermore, the relationship between electron 

transport rate and yield under field conditions (Figure 5-12) indicates that electron 

transport and subsequently energy generation may contribute to thermotolerance under 

field conditions.  
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Electron transport rate is a reliable and repeatable measurement for stress tolerance 

determination. This may be because fluorescence-based measurements such as electron 

transport rate are not influenced by environmental conditions inside the measurement 

chamber, as is the case with determination of photosynthesis. However, the cost of this 

test is considerable. There is a significant initial investment associated with the purchase 

of a Li-6400 portable photosynthesis system and fluorescence attachment. Alternatively, 

use of pulse amplitude modulated (PAM) fluorometer may decrease the initial investment 

cost.  Other methods of fluorescence determination including maximum efficiency of 

photosystem II (Fv/Fm) and quenching analysis may be potentially useful for use in 

screening programs (Bibi et al. 2008; Ducruet et al. 2007) and thus warrant further 

investigation. Furthermore, there is potential for investigation of the use of fluorometry for 

cultivar screening for drought (Burke 2007; Clavel et al. 2006; O'Neil et al. 2006), light 

(Bjorkman and Schafer 1989; Lambreva et al. 2005), cold (Warner and Burke 1993), 

salinity (Jiang et al. 2006), biotic or a combination of stresses for a complete stress 

screening program.  

Biochemical assays for membrane integrity and enzyme viability were used to determine 

the underlying limitations to electron transport under high temperature stress (Chapter 6). 

Membrane integrity decreased under high temperatures in the growth cabinet as well as 

under the tents and may possibly limit electron flow through photosynthetic and 

respiratory pathways (Taiz and Zeiger 2006). Furthermore, relative electrical conductivity 

was lower for Sicot 53 under both field and growth cabinet conditions compared with 

Sicala 45. Up or down-regulation of genes associated with membrane integrity was 

identified using microarray gene profiling and these genes may be validated for cultivar 

specificity using qRT-PCR for development of specific gene targeting for membrane 

integrity under high temperature stress.  
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Relative electrical conductivity correlated with yield during season 1 (Figure 6-5), as 

described for wheat (Blum and Ebercon 1981), beans (Schaff et al. 1987), sorghum 

(Sullivan 1971) and cotton (Rahman et al. 2004). Decreases in membrane integrity have 

been reported for drought (Bajji et al. 2002; Blum and Ebercon 1981; Rahman et al. 2008) 

and cold (Cottee et al. 2007; McDowell et al. 2007; Wulff et al. 1994) stress thereby 

indicating potential development of this assay for broad-spectrum stress tolerance 

screening. 

As a laboratory assay, determination of REC is rapid and reliable with few initial 

associated input costs (Marcum 1998), thus indicating potential for development of this 

method for genotype screening for thermotolerance (Bibi et al. 2008). Furthermore, 

similar results for REC under field and growth cabinet conditions indicate that there is 

potential for the development of growth cabinet and laboratory assays for the 

identification of stress tolerant cultivars for potential incorporation into breeding programs 

for industry-wide production. 

Dehydrogenase activity also decreased under high temperature stress in the growth cabinet 

(Figure 6-7) which is consistent with the findings of previous research (Chen et al. 1982; 

de Ronde and van der Mescht 1997; Porter et al. 1995; Schaff et al. 1987). This suggests 

that heat stress may increase membrane permeability, thus decreasing electron transport 

associated with membrane associated proteins and enzymes (Taiz and Zeiger 2006).  

Genes associated with cytochrome C and uncoupling proteins as well as genes involved in 

dehydrogenase and carboxylase activity were down-regulated under high temperatures in 

the growth cabinet (Table 7-8) thereby indicating a possible mechanism for reduced 

photosynthetic and respiratory capacity in the plant. Down-regulation of respiratory 

electron chains may contribute to lower potential for ATP production and energy 
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generation. Validation of genes associated with mitochondrial electron transport using 

qRT-PCR may indicate potential genes for targeting for stress screening programs under 

high temperature stress. However, cultivar differences for enzyme viability were not 

detected under high temperature stress in the field, thereby suggesting that this assay is not 

sufficiently sensitive to be used as a screening tool for thermotolerance in the field. 

Sicot 53 outperformed Sicala 45 in terms of yield, photosynthesis, electron transport, 

membrane integrity and enzyme viability under high temperature stress in the growth 

cabinet as well as under tents in this study. These findings are consistent with the work of 

Rahman (2005) who found similar patterns in stomatal conductance under high 

temperature stress under field conditions and in the glasshouse. This suggests that assays 

and measurements for determination of thermotolerance in the glasshouse may be 

indicative of functionality under field conditions. However, measurements of 

photosynthesis, electron transport, stomatal conductance, membrane integrity and enzyme 

viability under field conditions were greatly variable across the 3 seasons, 2 locations and 

multiple days of measurement which may be attributed to environmental variability 

(Marcum 1998).  

Although not indicative of plant capacity through an entire season, point-in-time survey 

measurements of gas exchange, membrane integrity are indicators of cultivar performance 

under high temperature stress at a specific point in time which, when replicated at various 

developmental stages may provide a snapshot of cultivar performance in response to plant 

and environmental variables throughout a season. Furthermore, although the magnitude of 

treatment differences for these measurements was relatively small, it is likely that the 

regulation of specific biological pathways is either an indicator of, or contributes to 

changes in overall plant function.  It is not suffice to say that any difference at any level is 
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indicative of overall plant thermotolerance, but rather that by measuring these components 

of plant functionality, cultivars with potential to maintain production under the 

environments for which they are tested can be identified. Furthermore, this research does 

not attempt to identify cultivar heat tolerance under all thermal environments that would 

be realistically encountered under field production systems, but rather attempts to find 

tools for cultivar discrimination under multiple high temperature environments including 

five Solarweave® tent events over 3 seasons as well as and a high temperature growth 

cabinet.   

There was a high degree of variation associated with determination of physiological and 

biochemical function under high temperatures in the field across and within the 3 seasons. 

Plant variation under field conditions is widely recognised as a primary limitation to the 

repeatability of field experiments, this variation may be minimised by evaluation of 

cultivar performance at a greater number of field sites over a greater number of seasons 

and with a larger number of measurements during each season for a higher number of 

replicates. This approach is currently used by plant breeders but may be applied to specific 

stress tolerance breeding programs, thus providing a more accurate representation of 

cultivar performance under high temperature stress in local environments and under long 

term production systems. 

The greatest resolution between temperature treatments and cultivars was determined 

under the tent 1 in seasons 1 and 2 and under high (42 oC) temperatures in the growth 

cabinet. Plants grown under these tents had in excess of 60 hr exposure to temperatures 

exceeding the high temperature threshold (35 oC) for cotton and over 20 hr under extreme 

(45 oC) high temperature stress (Table 3-6). This suggests that screening tools for 

thermotolerance are more effective when implemented in the presence of stress, which is 
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consistent with studies by Lopez et al. (2003b) and Rahman (2005). This highlights the 

importance of incorporating a large number of measurements under variable 

environmental conditions to ensure measurements are taken under the target stress and to 

identify subtle differences in plant function under high temperatures effectively. Hence 

growth cabinet studies need to be supplemented by field screening techniques to ensure 

that thermotolerant cultivars are correctly identified.  

The tents increased air temperatures, which may have initiated heat shock within the first 

few hours of plant exposure to heat stress and subsequent heat acclimation after several 

consecutive days of exposure under the tents. However, it is likely that heat stress was not 

imposed in isolation. The 18% nominal shade value of Solarweave® fabric may have 

altered the light environment, but Solarweave® simultaneously increases the proportion of 

diffuse radiation thereby resulting in an increase in radiation use efficiency by the crop 

(Healey et al. 1998). Furthermore, Solarweave® has sufficient durability to withstand 

unforseen environmental extremes, particularly high wind speeds and heavy precipitation 

events and was hence deemed the most suitable for field experiments. Disruption of air 

circulation under the tents or interception and diffusion of solar radiation may induce 

water logging or humidity stress following an irrigation or precipitation event. However, 

care was taken to ensure the tents were only constructed after at least 4 days post irrigation 

to allow sufficient drainage and aeration of roots thus minimising water logging stress for 

the measurement period. The tents were raised off the ground to facilitate air flow down 

the rows but the relative humidity under the tents still exceeded the level for the control. 

Although exposure to relative humidity stress was minimised, it was not excluded and is a 

limitation of imposing high temperature stress using Solarweave® tents. It is likely that by 

taking measurements 4 days after an irrigation event, the onset of drought stress was 

minimised during the measurement period. Evaluation of alternate methods to increase in-
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situ temperatures in the field may help alleviate problems with strict control of 

temperature and relative humidity during the treatment phase. 

All field experiments were conducted under full irrigation and growth cabinet experiments 

were conducted at field capacity in an attempt to attain relatively uniform leaf 

temperatures (cf. Gardner et al. 1981) within the ambient or tent temperature treatments. 

However, it is likely that leaf temperature of plants in response to the air temperature 

treatment was not uniform. This is highlighted in the growth cabinet study whereby 

cultivar differences were evident under control (32 oC) temperatures but not high (42 oC) 

temperatures in the growth cabinet (Figure 5-15). Cultivar dissimilarities in leaf 

temperature may be further exacerbated by instances of mild water deficit stress in the 

field or decreased incident radiation under the tents. The relationship between air and leaf 

temperature did not differ for plants grown under control and tent temperature regimes for 

measurements using the Li6400 portable photosynthesis system. For measurements of 

photosynthesis, electron transport rate, stomatal conductance and transpiration rate, 

variables such as light, water vapour pressure, humidity and carbon dioxide delivery were 

set within the sensor head and were thus sufficiently similar between the treatments. 

However, the imposition of tents may alter incident radiation, wind speed and vapour 

pressure to modify leaf temperature to a degree that surpasses equivalent increases in air 

temperature under ambient conditions thus affecting yield. Future research incorporating 

leaf and canopy temperature measurements may help explain temperature treatment and 

cultivar differences in plant morphology, physiology, biochemistry and gene expression 

under high atmospheric temperatures that were identified in this research.  

This thesis evaluated thermotolerance of cotton cultivars at a crop, plant, leaf, cell and 

gene level. Due to the multi-level and broad-scale theme of this research, only two 
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cultivars were selected for in-depth physiological determination. Sicot 53 was selected as 

a relatively tolerant cultivar whilst Sicala 45 was considered to have a lower level of heat 

tolerance on the basis of yield data in warm and hot growing regions. These cultivars had 

similar morphological characteristics e.g. leaf shape and are both used in current breeding 

programs. However, it is unlikely that these cultivars are representative of the upper and 

lower limit of thermotolerance in cotton cultivars and are also not widely grown as 

commercial cultivars in a market that is currently dominated by transgenic cultivars. These 

cultivars were sufficiently similar to facilitate molecular comparisons of gene expression 

under high temperature stress but were dissimilar to a level that facilitated cultivar 

discrimination for yield, physiological and biochemical function under high temperature 

stress. It is likely that inclusion of a greater number of genotypes will increase the 

resolution of these tolerance mechanisms as a result of greater genetic differences and 

capacity for thermotolerance.  

For the recommendations of this thesis to be applied in practical situations, it is necessary 

to verify the efficacy of these screening tools for a greater range of germplasm from 

diverse backgrounds and subsequent generations of crosses in a range of actual production 

systems. These tools may then be used to complement traditional breeding programs, 

rather than replace them to screen large genotypic populations at various growth stages for 

tolerance to heat stress as well as other abiotic stresses encountered under field production 

systems that may contribute to yield at the end of the season. 
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8.1 Suggested future work 
This study has evaluated a broad range of screening tools for determination of cultivar 

specific thermotolerance at a crop, whole plant, leaf, cell and gene level. However, there 

are several opportunities for further research as a result of this study, as summarised 

below: 

i. Screening of a wider range of commercially available cultivars and breeding 

lines, including genotypes originating from other countries and other cotton 

species such as Gossypium barbadense to identify a broad range of potential 

candidates for thermotolerance targeted breeding. 

ii.  Screening cotton cultivars for thermotolerance in a wider array of 

environments and production areas for the development of locally adapted 

genetic material. 

iii.  Investigations into the effects of rapid increases in temperature compared with 

slow increases in temperature to evaluate acquired thermotolerance. 

iv. Further evaluation of cultivar differences in recovery after exposure to stress. 

v. Further development of fluorescence as a possible screening tool for 

thermotolerance using pulse amplitude modulated fluorometry. 

vi. Further development of simple methods to impose heat stress in the laboratory, 

such as incubators (Burke 2007)  and the use of infra-red heaters in the field 

(Nijs et al. 1996) to minimise increases in relative humidity under the tents. 

vii.  Measurements of canopy and leaf temperature should be taken to explain 

changes in plant morphology, physiology, biochemistry and gene expression 

under high temperatures in the field.  
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viii.  Application of screening tools for thermotolerance, to other stresses for the 

identification of drought, radiation, cold and biotic stress tolerance to aid the 

development of a simple tool for screening overall stress tolerance. 

ix. Validation of genes associated with heat stress and high temperature tolerance 

that have been determined in this study by global gene profiling to confirm 

their role in regulation of the heat stress response. 

x. Validation of gene expression for thermotolerance under field conditions to 

confirm the role of genes associated with high temperature tolerance in the 

growth cabinet, to the complex field environment. 

xi. Identification of genes associated with fruit retention and fibre quality under 

high temperature stress for identification of thermotolerance at the flowering, 

boll set, boll and fibre development stages. 

xii. Development of molecular markers for marker assisted breeding. 

8.2 Concluding remarks 
This study found cultivar differences in morphological, physiological, biochemical and 

molecular function in response to high temperature stress in the field and in the growth 

cabinet using a multi-level approach, encompassing crop, whole plant, leaf, cell and gene 

level measurements and assays.   

Electron transport rate determined by fluorescence measurements and membrane integrity 

determined by the relative electrical conductivity assay were correlated with yield in 

seasons 1 and 3. These methods were simple, rapid and reliable. Hence, electron transport 

rate and relative electrical conductivity were the most effective methods for cultivar 

determination of thermotolerance under high temperature conditions and may have 
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potential for incorporation into future breeding programs for superior yield under heat 

stress. 

Sicot 53 had consistently higher photosynthesis, electron transport and membrane integrity 

compared with Sicala 45 plants grown under the tents and high (42 oC) temperatures in the 

growth cabinet. A greater number of genes associated with metabolism, photosynthesis, 

mitochondrial electron transport and protective proteins were up- or down-regulated in 

response to high temperatures in the growth cabinet for Sicala 45 compared with Sicot 53 

indicating a more severe heat stress response. Consistent cultivar differences across 

measurement levels and environments indicate that Sicot 53 has relatively higher 

thermotolerance compared with Sicala 45. This multi-level approach provides a 

comprehensive knowledge base as to the contributing factors to heat tolerance from a 

single gene to a whole crop level and highlights multiple opportunities for the 

development of screening methods to enable the identification of heat tolerant cultivars. 

In conclusion, this study has identified consistent cultivar differences in heat tolerance at a 

crop, whole plant, leaf, cell and molecular level of organisation, thus providing a 

foundation for the development of a multi-level approach for identification of heat 

tolerance in cotton cultivars. 
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Appendix  Gene expression tables for microarray analysis 



 

Table 1 Relative expression of stress genes up-regulated for cultivars Sicot 53 and Sicala 45 under optimal (32 oC) and high (42 oC) temperatures in the growth 
cabinet 

Pathway Public ID Relative 

expression 

Adjusted P 

value 

Arabidopsis hit  Arabidopsis hit description E-Value 

Biotic stress DN804462 1.327 4.00E-02 At1g33970.1 expressed protein  8.24E-41 

Biotic stress DW236162.1 1.351 2.25E-02 At4g05440.1 D123 -related protein protein D123 1.00E-130 

Biotic stress DT463926 1.459 2.30E-03 At5g51700.1 RAR1 disease resistance protein 8.33E-74 

Biotic stress DT053436 1.504 2.77E-03 At4g37000.1 accelerated cell death 2 (ACD2)  4.87E-48 

Biotic stress DW507678.1 1.562 3.10E-02 At1g64140.1 expressed protein 4.14E-151 

Biotic stress AI726851 2.418 8.34E-04 At5g47120.1 Bax inhibitor-1 (BI-1) 1.14E-89 

Cold stress DT048302 2.664 3.33E-02 - - - 

Drought/salt stress CO127394 1.389 2.61E-02 At2g03480.1 dehydration-induced protein-related 2.77E-132 

Drought/salt stress DV849352 1.515 3.61E-02 At5g49230.1 drought-induced protein 8.97E-43 

Drought/salt stress DT455898 1.643 1.33E-02 At4g16390.1 chloroplastic RNA-binding protein P67, putative 2.15E-140 

Drought/salt stress DT468710 1.999 2.23E-02 At2g03480.1  dehydration-induced protein-related 1.03E-89 

Heat stress DT467391 1.353 2.74E-02 At4g10250.1 endomembrane-localized small heat shock protein 1.03E-45 

Heat stress CO070759 1.37 2.42E-02 At5g56030.1 heat shock protein 81-2 (HSP81-2) 2.89E-60 

Heat stress DR462570 1.394 4.23E-02 At5g18750.1 DnaJ domain-containing protein 5.53E-08 

Heat stress CO075693 1.399 4.61E-02 At3g44110.1 DnaJ protein AtJ3  2.62E-104 

Heat stress DN758088 1.404 1.08E-02 At3g44110.1 DnaJ protein AtJ3  3.72E-146 

Heat stress DT465440 1.488 4.65E-02 At4g11660.1 heat shock factor protein 7 (HSF7)  4.33E-34 

Heat stress DW516953.1 1.489 2.03E-03 At2g35795.1 DnaJ domain-containing protein 1.05E-42 

Heat stress DW516183.1 1.509 3.37E-02 At5g56030.1 heat shock protein 81-2 (HSP81-2) 1.40E-34 

Heat stress DW516183.1 1.509 3.37E-02 At5g56030.1 heat shock protein 81-2 (HSP81-2)  1.40E-34 
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Pathway Public ID Relative 

expression 

Adjusted P 

value 

Arabidopsis hit  Arabidopsis hit description E-Value 

Heat stress DR456019 1.567 4.01E-02 - - - 

Heat stress DR456432 1.623 4.89E-02 At4g24280.1 heat shock protein cpHsc70-1 heat shock 70 protein 1.20E-76 

Heat stress DT560821 1.672 4.85E-02 At5g56030.1 heat shock protein 81-2 (HSP81-2)  0 

Heat stress DT560821 1.672 4.85E-02 At5g56030.1 heat shock protein 81-2 (HSP81-2) 0 

Heat stress DT048776 1.681 2.88E-02 At3g44110.1 DnaJ protein AtJ3 2.52E-111 

Heat stress DN761905 1.695 1.40E-02 At5g09590.1 heat shock protein mtHsc70-2 (Hsc70-5)  2.45E-24 

Heat stress DT460619 1.705 4.87E-02 At2g32120.2 heat shock protein hsp70t-2  2.26E-53 

Heat stress CO070151 1.77 1.46E-02 At5g62020.1 heat shock transcription factor 6 (HSF6) 1.16E-75 

Heat stress CO125371 1.805 2.31E-02 At4g24280.1 heat shock protein cpHsc70-1  2.63E-107 

Heat stress DW496653.1 1.963 2.33E-02 At3g14200.1 DnaJ protein family 6.09E-06 

Heat stress DT460963 2.102 6.83E-03 At2g32120.2 heat shock protein hsp70t-2  6.89E-45 

Heat stress CA993412 2.312 2.02E-02 - - - 

Heat stress DT051231 2.389 8.64E-04 At4g24190.1 shepherd (SHD)  3.48E-44 

Heat stress CO108164 2.545 1.88E-02 At5g56030.1 heat shock protein 81-2 (HSP81-2)  5.03E-127 

Heat stress CO108164 2.545 1.88E-02 At5g56030.1 heat shock protein 81-2 (HSP81-2) 5.03E-127 

Heat stress AW186892 2.635 2.71E-03 At4g24190.1 shepherd (SHD) 1.14E-107 

Heat stress DR457102 2.643 1.41E-04 - - - 

Heat stress CA992849 2.956 1.28E-03 At3g44110.1 DnaJ protein AtJ3 1.54E-170 

Heat stress CO092638 2.956 1.21E-02 At3g23990.1 chaperonin (CPN60/HSP60)] 5.37E-72 

Heat stress DT457869 3.406 8.96E-04 At2g29500.1 small heat shock protein 2.54E-45 

Heat stress DT545357 3.428 3.47E-04 At4g25200.1 mitochondrion-localized small heat shock protein  4.99E-62 
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Pathway Public ID Relative 

expression 

Adjusted P 

value 

Arabidopsis hit  Arabidopsis hit description E-Value 

Heat stress DW237876.1 3.473 3.66E-02 At5g59720.1 heat shock protein family 1.48E-43 

Heat stress DT046481 3.559 4.55E-03 At5g56030.1 heat shock protein 81-2 (HSP81-2)  0 

Heat stress DT046481 3.559 4.55E-03 At5g56030.1 heat shock protein 81-2 (HSP81-2) 0 

Heat stress DW487642.1 3.813 1.26E-02 At3g23990.1 chaperonin (CPN60/HSP60) 5.39E-90 

Heat stress DT047459 3.994 1.06E-04 At5g62020.1 heat shock transcription factor 6 (HSF6) 2.88E-09 

Heat stress DW496991.1 4.792 6.07E-03 At1g54050.1 heat shock hsp20 protein family 2.77E-33 

Heat stress CO132723 4.901 1.25E-05 At4g11660.1 heat shock factor protein 7 (HSF7)  1.05E-57 

Heat stress DT050385 4.981 6.49E-06 At3g23990.1 chaperonin (CPN60/HSP60) 1.35E-10 

Heat stress DW505128.1 6.712 3.08E-04 At4g27670.1 small heat shock protein, chloroplast precursor(HSP21)  1.96E-25 

Heat stress CA992712 7.539 7.06E-04 At5g52640.1 heat shock protein 81-1 (HSP81-1/heat shock protein 83/HSP83) 8.99E-66 

Heat stress DT456116 8.919 5.54E-04 At2g26150.1 heat shock transcription factor family 2.66E-72 

Heat stress DT049115 9.451 2.65E-04 At2g29500.1 small heat shock protein 3.03E-56 

Heat stress DT467180 9.761 2.25E-05 At5g12020.1 class II heat shock protein 1.12E-35 

Heat stress DW230150.1 10.084 4.11E-04 At5g52640.1 heat shock protein 81-1 (HSP81-1/heat shock protein 83/HSP83)  1.12E-54 

Heat stress DR455939 10.441 7.24E-04 At5g12020.1 class II heat shock protein 3.71E-31 

Heat stress DW513189.1 15.343 1.80E-04 At4g25200.1 mitochondrion-localized small heat shock protein  2.47E-59 

Heat stress DN760566 15.345 3.66E-04 At5g52640.1 heat shock protein 81-1 (HSP81-1/heat shock protein 83/HSP83) 7.11E-76 

Heat stress DN757824 17.311 2.53E-04 At5g37670.1 heat shock protein family 2.20E-38 

Heat stress DT527234 18.079 2.89E-03 At5g59720.1 heat shock protein family 4.55E-36 

Heat stress CA993514 18.212 5.77E-04 At2g29500.1 small heat shock protein 9.90E-55 

Heat stress DT465978 20.649 3.94E-05 At2g29500.1 small heat shock protein 1.39E-56 

194 



 

Pathway Public ID Relative 

expression 

Adjusted P 

value 

Arabidopsis hit  Arabidopsis hit description E-Value 

Heat stress DT457869 21.789 2.38E-04 At2g29500.1 small heat shock protein -related  2.54E-45 

Heat stress DT049773 22.439 1.38E-05 At2g32120.2 heat shock protein hsp70t-2  6.89E-45 

Heat stress DW234293.1 23.818 5.77E-04 At2g29500.1 small heat shock protein 4.32E-46 

Heat stress DW503063.1 28.87 1.17E-04 At5g52640.1 heat shock protein 81-1 (HSP81-1/heat shock protein 83/HSP83)  2.42E-112 

Heat stress DW503063.1 28.87 1.17E-04 At5g52640.1 heat shock protein 81-1 (HSP81-1/heat shock protein 83/HSP83)  2.42E-112 

Heat stress DR455451 30.145 2.24E-03 At4g27670.1 small heat shock protein, chloroplast precursor(HSP21) 8.71E-64 

Heat stress DW517704.1 35.33 1.84E-04 At4g10250.1 endomembrane-localized small heat shock protein 2.11E-15 

Heat stress CA992719 38.989 1.19E-04 At4g10250.1 endomembrane-localized small heat shock protein 3.92E-31 

Heat stress DW503697.1 83.99 7.78E-07 At1g07400.1 heat shock protein, putative  1.40E-49 

Light stress DW505008.1 1.817 2.22E-02 At5g11580.1 expressed protein rjs protein 8.90E-80 

Touch/wounding  DR456264 1.368 3.39E-02 At3g07230.1 wound-induced basic protein 1.79E-13 

Touch/wounding  BF272159 1.532 4.02E-02 At3g07230.1 wound-induced basic protein 6.52E-15 

Unspecified stress M19379.1 1.248 4.92E-02 - - - 

Unspecified stress AI055725 1.68 4.39E-02 At1g28290.1 prolin-rich protein 1.44E-33 

Unspecified stress DT571171 1.7 1.13E-02 At1g11360.2 expressed protein  1.75E-65 

Unspecified stress AJ513421 1.738 1.39E-03 At1g01170.1 expressed protein  8.98E-16 

Unspecified stress DN801667 4.432 2.85E-02 At1g44760.1 expressed protein  1.18E-19  
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Table 2 Relative expression of stress genes up-regulated for cultivars Sicot 53 and Sicala 45 under optimal (32 oC) and high (42 oC) temperatures in the growth 
cabinet 

Pathway Public ID Relative 

expression 

Adjusted P 

value 

Arabidopsis 

hit  

Arabidopsis hit description E-Value 

Biotic stress DW509680.1 0.405 2.81E-02 At1g58170.1 disease resistance response protein-related/ dirigent protein-related 9.89E-57 

Biotic stress DT465458 0.493 1.92E-02 At3g54420.1 glycosyl hydrolase family 19 (class IV chitinase) 1.46E-70 

Biotic stress DW488405.1 0.575 1.09E-02 At2g21340.1 enhanced disease susceptibility 5 (salicylic acid induction deficient 1)  7.20E-140 

Biotic stress DV849720 0.622 6.29E-03 At5g61240.1 leucine rich repeat protein family  6.29E-110 

Biotic stress AY040533.1 0.673 2.10E-02 At5g61240.1 leucine rich repeat protein family 9.56E-106 

Biotic stress DT050959 0.769 4.39E-02 At5g17680.1 disease resistance protein (TIR-NBS-LRR class) 1.07E-24 

Biotic stress DT050959 0.769 4.39E-02 At5g17680.1 disease resistance protein (TIR-NBS-LRR class) 1.07E-24 

Cold stress DT465699 0.653 1.40E-02 At4g13850.1 glycine-rich RNA-binding protein (AtGRP2) 6.61E-19 

Cold stress DW511523.1 0.665 1.11E-02 At4g13850.2 glycine-rich RNA-binding protein (AtGRP2) 5.29E-32 

Drought/salt stress AY641991.1 0.457 3.50E-02 At5g25610.1 dehydration-induced protein RD22  5.78E-35 

Drought/salt stress CO091414 0.459 3.61E-02 At5g25610.1 dehydration-induced protein RD22  1.63E-80 

Drought/salt stress AY641990.1 0.468 4.16E-02 At5g25610.1 dehydration-induced protein RD22  4.71E-48 

Drought/salt stress AI731201 0.474 4.15E-02 At5g25610.1 dehydration-induced protein RD22  1.32E-61 

Drought/salt stress DT054238 0.515 2.53E-02 At3g23300.1 dehydration-induced protein-related 4.93E-95 

Drought/salt stress DW520205.1 0.635 8.33E-03 At4g18030.1 dehydration-induced protein family 2.26E-80 

Drought/salt stress DW224875.1 0.665 4.45E-02 At4g14360.1 dehydration-induced protein 1.08E-146 

Drought/salt stress DT462193 0.757 2.02E-02 At5g64030.1 dehydration-induced protein-related 4.39E-75 

Heat stress CO086335 0.694 1.56E-02 At1g76700.1 DnaJ protein family  4.14E-82 

Heat stress DT466906 0.763 4.29E-02 At1g67970.1 heat shock transcription factor 5 (HSF5) 5.37E-28 

Unspecified stress DT467978 0.567 2.98E-02 At2g21620.1 auxin-regulated protein  1.30E-66 
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Table 3 Relative expression of metabolism genes, up-regulated under high (42 oC) and compared to optimal (32 oC) temperatures in the growth cabinet for cultivars 
Sicot 53 and Sicala 45. 

Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Carbohydrate metabolism DT465672 4.67 2.75E-02 At1g23870.1 trehalose phosphatase family 3.79E-35 

Carbohydrate metabolism DT464481 1.361 1.18E-02 At1g06690.1 aldo/keto reductase family  3.24E-20 

Carbohydrate metabolism DT462221 2.061 3.84E-03 - - - 

Carbohydrate metabolism AY628139.1 3.007 4.44E-02 At1g23870.1 trehalose phosphatase family 0 

Carbohydrate metabolism DT050177 1.775 1.25E-02 - - - 

Carbohydrate metabolism DT050909 1.442 4.21E-02 - - - 

Carbohydrate metabolism DT049671 1.294 3.63E-02 At4g28300.1 proline-rich protein family 2.57E-22 

Carbohydrate metabolism DW238688.1 5.903 4.13E-02 At2g47180.1 galactinol synthase, putative 2.29E-126 

Carbohydrate metabolism DR463306 1.871 2.09E-02 At5g19730.1 pectinesterase family  4.23E-95 

Carbohydrate metabolism DR462102 1.624 2.75E-02 At4g02500.1 transferase - related  2.75E-13 

Carbohydrate metabolism AI726514 1.857 3.34E-03 At3g02210.1 predicted GPI-anchored protein 0 

Carbohydrate metabolism AW186880 2.417 1.16E-02 At5g41870.1 polygalacturonase, putative 6.02E-40 

Carbohydrate metabolism DT456785 2.079 4.77E-02 - - - 

Carbohydrate metabolism DW227981.1 2.936 4.29E-02 At5g65730.1 xyloglucan endotransglycosylase, putative  2.46E-105 

Carbohydrate metabolism CO122431 3.178 3.18E-02 At4g37800.1 xyloglucan endotransglycosylase, putative  5.40E-47 

Electron flow / ATP  DN800322 2.237 1.20E-02 At1g06680.1 photosystem II oxygen-evolving complex 23 (OEC23) 5.11E-85 

Electron flow / ATP DT051416 1.599 2.29E-02 At1g07890.2 ascorbate peroxidase, putative (APX) 2.26E-101 

Electron flow / ATP DR458096 2.003 4.73E-04 At2g28000.1 RuBisCO subunit binding-protein alpha subunit/ 0 

Electron flow / ATP DV849478 3.338 2.27E-04 At2g28000.1 RuBisCO subunit binding-protein alpha subunit  8.87E-23 

Electron flow / ATP DW508175.1 1.742 6.83E-03 At1g75270.1 dehydroascorbate reductase 1.75E-32 
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Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Electron flow / ATP DW497212.1 1.798 3.46E-02 At1g03600.1 photosystem II protein family 2.14E-43 

Electron flow / ATP DW509246.1 1.241 4.12E-02 At1g63460.1 glutathione peroxidase 7.62E-70 

Electron flow / ATP DN817738 1.4 4.75E-02 At4g20130.1 expressed protein 4.62E-49 

Electron flow / ATP DN817738 1.4 4.75E-02 At4g20130.1 expressed protein 4.62E-49 

Electron flow / ATP CO072814 2.449 3.50E-03 At2g28000.1 RuBisCO subunit binding-protein alpha subunit  1.67E-154 

Electron flow / ATP CO121719 2.455 1.37E-02 At2g28000.1 RuBisCO subunit binding-protein alpha subunit 3.75E-107 

Electron flow / ATP DW226042.1 1.543 9.27E-03 At5g14590.1 isocitrate dehydrogenase [NADP+] 2.94E-33 

Lipid metabolism DT047253 1.289 4.84E-02 At1g54580.1 acyl carrier protein (ACP), chloroplast 4.38E-23 

Lipid metabolism CA993580 1.479 1.18E-02 At4g33030.1 UDP-sulfoquinovose synthase  1.69E-33 

Lipid metabolism CA993580 1.818 2.30E-03 At4g33030.1 UDP-sulfoquinovose synthase  1.69E-33 

Lipid metabolism DT466441 1.975 9.08E-04 At2g19450.1 diacylglycerol O-acyltransferase  1.15E-56 

Lipid metabolism AY138250.1 1.32 2.29E-02 At2g42010.1 phospholipase D (PLDbeta)  0 

Lipid metabolism DR452394 1.486 1.59E-02 At1g01710.1 acyl CoA thioesterase -related  8.86E-65 

Lipid metabolism DW508235.1 1.578 4.23E-03 At5g65940.1 3-hydroxyisobutyryl-coenzyme A  3.18E-144 

Protein metabolism DR454255 3.276 5.79E-04 At1g80160.1 glyoxalase family  1.02E-63 

Protein metabolism DT052636 1.642 1.02E-02 - - - 

Protein metabolism DT050254 1.482 3.15E-02 At1g43710.1 histidine decarboxylase -related 2.83E-102 

Protein metabolism DT049512 1.729 2.55E-02 At4g16210.1 enoyl-CoA hydratase/isomerase family 2.67E-89 

Protein metabolism DT049512 1.729 2.55E-02 At4g16210.1 enoyl-CoA hydratase/isomerase family  2.67E-89 

Protein metabolism DT459731 1.551 2.22E-02 - - - 

Protein metabolism DT463796 1.616 5.56E-03 At5g47720.2 acetyl-CoA C-acetyltransferase  9.-96E-81 
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Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Protein metabolism DW513900.1 1.442 4.84E-03 At1g53580.1 glyoxalase II, putative (hydroxyacylglutathione hydrolase)  3.25E-55 

Protein metabolism DW508235.1 1.578 4.23E-03 At5g65940.1 3-hydroxyisobutyryl-coenzyme A hydrolase  3.18E-144 

Protein metabolism DW508235.1 1.578 4.23E-03 At5g65940.1 3-hydroxyisobutyryl-coenzyme A hydrolase  3.18E-144 

Protein metabolism CO125254 1.735 2.95E-02 At4g34030.1 3-methylcrotonyl-CoA carboxylase non-biotinylated subunit  0 

Protein metabolism DT463182 2.11 1.33E-02 At3g59760.3 Mitochondria cysteine synthase  1.65E-16 

Protein metabolism DW228504.1 1.534 3.65E-02 At5g11880.1 diaminopimelate decarboxylase 0 

Protein metabolism CO123242 1.623 3.89E-02 At3g47340.1 glutamine-dependent asparagine synthetase 8.71E-85 

Protein metabolism CO086852 1.919 1.18E-02 At1g55880.1 pyridoxal-5&apos;-phosphate-dependent enzyme, beta family 1.63E-136 

Protein metabolism DR458982 1.586 1.06E-02 At1g31860.1 phosphoribosyl-ATP pyrophosphohydrolase (At-IE) 1.57E-16 

Protein metabolism DT049512 1.729 2.55E-02 At4g16210.1 enoyl-CoA hydratase/isomerase family 2.67E-89 

Protein metabolism DT050039 9.65 2.24E-04 At1g64660.1 methionine/cystathionine gamma lyase -related  1.14E-69 

Protein metabolism AI728424 1.3 1.87E-02 At2g44520.1 UbiA prenyltransferase family 2.19E-124 

Protein metabolism DT050567 1.295 4.50E-02 At1g20270.1 oxidoreductase, 2OG-Fe(II) oxygenase family 4.09E-106 

Protein metabolism DT463796 1.616 5.56E-03 At5g47720.2 acetyl-CoA C-acetyltransferase  9.96E-81 

Protein metabolism DW508235.1 1.578 4.23E-03 At5g65940.1 3-hydroxyisobutyryl-coenzyme A hydrolase  3.18E-144 

Protein metabolism CO085474 1.579 6.59E-04 At5g53120.3 spermidine synthase 3.66E-12 

Protein metabolism DR457948 1.446 3.66E-02 At4g33510.1 2-dehydro-3-deoxyphosphoheptonate aldolase (DHS2)  7.43E-22 

Protein metabolism CA993771 1.717 8.79E-03 At3g26900.1 shikimate kinase family 5.00E-12 

Protein metabolism CK640599 1.817 8.69E-03 At3g26900.1 shikimate kinase family 5.00E-12 

Protein metabolism DW224301.1 1.307 1.46E-02 At5g12200.1 dihydropyrimidinase 7.03E-118 

Secondary metabolism DT468970 1.672 3.93E-03 At3g02780.1 isopentenyl-diphosphate delta-isomerase II (IPP2)  1.56E-102 
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Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Secondary metabolism DT463796 1.616 5.56E-03 At5g47720.2 acetyl-CoA C-acetyltransferase  9.96E-81 

Secondary metabolism DW489433.1 1.504 1.37E-02 At5g06060.1 short-chain dehydrogenase/reductase family protein  2.81E-80 

Secondary metabolism DV849305 1.35 4.79E-03 At1g65020.1 hypothetical protein 2.41E-08 

Secondary metabolism DW508496.1 1.493 2.83E-02 At2g33590.1 cinnamoyl-CoA reductase family  8.57E-67 
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Table 4 Relative expression of metabolism genes, down-regulated under high (42 oC) and compared to optimal (32 oC) temperatures in the growth cabinet for 
cultivars Sicot 53 and Sicala 45. 

Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Carbohydrate metabolism AJ864707.1 0.622 2.68E-02 At4g02500.1 transferase - related 0 

Carbohydrate metabolism CO091591 0.52 2.66E-02 At3g02230.1 reversibly glycosylated polypeptide-1 6.20E-179 

Carbohydrate metabolism CO091591 0.52 2.66E-02 At3g02230.1 reversibly glycosylated polypeptide-1  6.20E-179 

Carbohydrate metabolism DV849226 0.643 2.04E-02 At5g60920.1 phytochelatin synthetase 1.64E-162 

Carbohydrate metabolism AI730691 0.423 1.39E-02 At4g31590.1 glycosyltransferase family 2  8.59E-157 

Carbohydrate metabolism CO124872 0.548 4.25E-03 At5g60920.1 phytochelatin synthetase 1.67E-156 

Carbohydrate metabolism CO074429 0.71 2.42E-02 At2g37770.1 aldo/keto reductase family  3.34E-120 

Carbohydrate metabolism DW493894.1 0.491 1.26E-02 At5g53580.1 aldo/keto reductase family  5.76E-113 

Carbohydrate metabolism CO090978 0.543 4.65E-02 At4g31590.1 glycosyltransferase family 2  2.52E-108 

Carbohydrate metabolism DT560269 0.339 2.86E-03 At5g15650.1 reversibly glycosylated polypeptide-3 4.88E-107 

Carbohydrate metabolism CO085470 0.673 4.55E-03 At5g07720.1 transferase - related  2.19E-101 

Carbohydrate metabolism DW515371.1 0.635 9.94E-03 At3g53520.2 NAD-dependent epimerase/dehydratase family  8.04E-101 

Carbohydrate metabolism AI727768 0.703 3.30E-02 At5g37850.1 pfkB type carbohydrate kinase protein family  7.54E-93 

Carbohydrate metabolism DT467596 0.629 2.72E-02 At5g57330.1 aldose 1-epimerase family  1.27E-90 

Carbohydrate metabolism DW230406.1 0.348 2.73E-02 At3g29030.1 expansin, putative (EXP5) 3.87E-90 

Carbohydrate metabolism DW230406.1 0.309 1.18E-02 At3g29030.1 expansin, putative (EXP5)  3.87E-90 

Carbohydrate metabolism CO123503 0.496 2.62E-03 At3g53520.2 NAD-dependent epimerase/dehydratase family  3.59E-89 

Carbohydrate metabolism AI730914 0.555 3.99E-02 At2g21250.1 mannose 6-phosphate reductase (NADPH-dependent) 7.52E-81 

Carbohydrate metabolism DW487656.1 0.514 2.29E-02 At1g74910.2 ADP-glucose pyrophosphorylase family 2.37E-71 

Carbohydrate metabolism DW502713.1 0.734 2.09E-02 At2g36850.1 callose synthase (1,3-beta-glucan synthase) family  3.44E-66 
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Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Carbohydrate metabolism CO101937 0.675 2.66E-02 At1g53840.1 pectinesterase family  3.71E-62 

Carbohydrate metabolism DW515687.1 0.572 2.17E-02 At4g03550.1 callose synthase (1,3-beta-glucan synthase) family 1.58E-61 

Carbohydrate metabolism CO121156 0.569 8.20E-03 At2g16730.1 glycosyl hydrolase family 35 (beta-galactosidase)  1.65E-61 

Carbohydrate metabolism CO072739 0.619 1.70E-02 At4g24780.1 polysaccharide lyase family 1 (pectate lyase) 1.04E-60 

Carbohydrate metabolism DT047184 0.492 2.68E-02 At3g59480.1 fructokinase 1.84E-58 

Carbohydrate metabolism AW187367 0.672 2.78E-02 At5g61760.1 inositol polyphosphate 6-/3-/5-kinase 2b (IPK2b)  3.46E-58 

Carbohydrate metabolism DT461699 0.589 4.92E-02 At5g51970.1 L-iditol 2-dehydrogenase (sorbitol dehydrogenase) 1.07E-56 

Carbohydrate metabolism CO123504 0.729 2.43E-02 At3g53520.2 NAD-dependent epimerase/dehydratase family  3.75E-49 

Carbohydrate metabolism DW502455.1 0.66 1.16E-02 At3g47810.1 calcineurin-like phosphoesterase family 1.06E-43 

Carbohydrate metabolism AI729695 0.531 3.34E-02 At5g03760.1 glycosyltransferase family 2 6.08E-41 

Carbohydrate metabolism DT048325 0.65 3.44E-02 At5g07370.3 inositol polyphosphate 6-/3-/5-kinase 2a (IPK2a) 7.61E-30 

Carbohydrate metabolism AI727392 0.692 4.13E-02 At4g39210.1 glucose-1-phosphate adenylyltransferase, large subunit 3  1.43E-26 

Carbohydrate metabolism DW496260.1 0.28 2.62E-04 At2g40835.1 4-alpha-glucanotransferase -related  1.08E-24 

Carbohydrate metabolism DT048308 0.346 3.08E-04 At2g40840.1 glycosyl hydrolase family 77 (4-alpha-glucanotransferase) 2.73E-20 

Carbohydrate metabolism DT467597 0.767 2.98E-02 At5g57330.1 aldose 1-epimerase family  7.14E-20 

Carbohydrate metabolism DT462436 0.505 1.63E-02 At5g15650.1 reversibly glycosylated polypeptide-3 6.09E-09 

Electron flow / ATP DW520074.1 0.431 2.05E-02 At5g21105.1 L-ascorbate oxidase 0 

Electron flow / ATP AI727260 0.508 1.41E-02 At1g65930.1 isocitrate dehydrogenase [NADP+] 0 

Electron flow / ATP DT570696 0.565 7.93E-03 At3g52990.1 pyruvate kinase 0 

Electron flow / ATP CO079284 0.813 4.76E-02 At1g65930.1 isocitrate dehydrogenase [NADP+] 0 

Electron flow / ATP AI729460 0.644 6.68E-03 At5g56350.1 pyruvate kinase 1.34E-180 
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Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Electron flow / ATP DN758099 0.731 3.86E-02 At5g43330.1 malate dehydrogenase, cytosolic 3.27E-157 

Electron flow / ATP DR460112 0.67 4.62E-02 At3g02360.2 6-phosphogluconate dehydrogenase -related 8.07E-153 

Electron flow / ATP CA992949 0.546 1.08E-02 At2g22500.1 mitochondrial carrier protein family  3.32E-113 

Electron flow / ATP CD486706 0.528 1.06E-02 At4g35260.1 isocitrate dehydrogenase [NAD+] subunit 1  5.35E-108 

Electron flow / ATP DW482562.1 0.555 2.53E-02 At1g63940.2 monodehydroascorbate reductase 9.39E-103 

Electron flow / ATP AI731438 0.475 1.89E-03 At5g58970.1 uncoupling protein (AtUCP2)  1.58E-101 

Electron flow / ATP DN779701 0.55 5.39E-04 At3g12290.1 tetrahydrofolate dehydrogenase/cyclohydrolase 6.82E-81 

Electron flow / ATP CO122289 0.648 2.33E-02 At1g12230.1 expressed protein  5.45E-77 

Electron flow / ATP CO121880 0.701 4.73E-02 At5g05980.1 folylpolyglutamate synthase (fpgs2) 1.54E-62 

Electron flow / ATP DR457529 0.576 2.44E-02 At4g29210.1 gamma-glutamyltransferase 5.58E-58 

Electron flow / ATP DW233286.1 0.747 4.73E-02 At3g54110.1 uncoupling protein (ucp/PUMP) 8.49E-58 

Electron flow / ATP DR452595 0.694 4.08E-02 At5g13420.1 transaldolase 2.85E-54 

Electron flow / ATP DT049717 0.614 6.12E-03 At5g56350.1 pyruvate kinase 3.35E-25 

Electron flow / ATP DT462190 0.595 2.83E-02 At1g26340.1 cytochrome b5, putative 4.70E-25 

Electron flow / ATP DW516468.1 0.692 2.25E-02 At1g36370.1 hydroxymethyltransferase -related 4.32E-23 

Electron flow / ATP DW516468.1 0.692 2.25E-02 At1g36370.1 hydroxymethyltransferase -related 4.32E-23 

Electron flow / ATP DW516487.1 0.614 1.51E-03 At3g12290.1 tetrahydrofolate dehydrogenase/cyclohydrolase 8.63E-18 

Electron flow / ATP DN804599 0.776 3.05E-02 At2g06520.1 expressed protein 3.76E-12 

Electron flow / ATP DW502424.1 0.559 1.26E-02 At2g30570.2 photosystem II reaction center 6.1KD protein 7.97E-10 

Lipid Metabolism CO088408 0.743 4.88E-02 At5g05580.1 omega-3 fatty acid desaturase, chloroplast precursor (FAD8) 3.96E-82 

Lipid Metabolism DW483924.1 0.702 4.25E-03 At4g38570.1 CDP-diacylglycerol--inositol 3-phosphatidyltransferase  5.43E-81 
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Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Lipid Metabolism DW497734.1 0.624 2.64E-03 At5g46800.1 mitochondrial carrier protein 3.89E-73 

Lipid Metabolism DW512425.1 0.637 7.43E-03 At2g20900.2 diacylglycerol kinase -related 5.07E-59 

Lipid Metabolism CA993116 0.407 9.27E-03 At1g54580.1 acyl carrier protein (ACP), chloroplast 1.12E-25 

Not assigned/ Miscellaneous CD485841 0.587 4.39E-02 At5g17380.1 2-hydroxyphytanoyl-CoA lyase-related protein 5.71E-79 

Not assigned/ Miscellaneous DT048493 0.723 3.55E-02 At5g17380.1 2-hydroxyphytanoyl-CoA lyase-related protein 9.60E-44 

Protein metabolism CO125029 0.64 1.26E-02 At5g11520.1 aspartate aminotransferase, chloroplast (transaminase A/Asp3) 0 

Protein metabolism DR457196 0.489 1.96E-02 At1g02500.2 s-adenosylmethionine synthetase 0 

Protein metabolism CO121832 0.543 1.17E-02 At5g17920.1 5-methyltetrahydropteroyltriglutamate--homocysteine S-

methyltransferase 

0 

Protein metabolism CO085576 0.514 1.85E-02 At5g17920.1 5-methyltetrahydropteroyltriglutamate--homocysteine S-

methyltransferase 

0 

Protein metabolism DT051155 0.425 3.34E-02 At4g13940.1 adenosylhomocysteinase 0 

Protein metabolism CD486388 0.498 3.38E-02 At4g13940.1 adenosylhomocysteinase 0 

Protein metabolism DT047727 0.694 4.61E-03 At3g54470.1 UMP synthase 0 

Protein metabolism AI726035 0.533 1.21E-02 At1g48850.1 chorismate synthase  0 

Protein metabolism DT463094 0.508 2.25E-02 At5g53460.1 glutamate synthase [NADH], chloroplast 2.05E-169 

Protein metabolism CO125856 0.646 2.64E-02 At5g07440.1 glutamate dehydrogenase 2 3.26E-169 

Protein metabolism CO109339 0.655 2.06E-02 At1g79230.1 mercaptopyruvate sulfurtransferase (Mst1/Rdh1)  1.50E-158 

Protein metabolism DT567362 0.495 4.87E-02 At2g02010.1 glutamate decarboxylase 4.22E-147 

Protein metabolism DT046700 0.68 4.36E-02 At5g17920.1 5-methyltetrahydropteroyltriglutamate-homocysteine S-

methyltransferase 

1.02E-142 
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Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Protein metabolism DR458557 0.534 7.24E-03 At5g18280.1 apyrase 2.03E-141 

Protein metabolism DT561935 0.611 2.55E-02 At4g34200.1 D-3-phosphoglycerate dehydrogenase (3-PGDH) 8.26E-126 

Protein metabolism DT046719 0.727 1.22E-02 At5g18900.1 oxidoreductase, 2OG-Fe(II) oxygenase family 1.07E-125 

Protein metabolism CO091894 0.618 2.06E-02 At3g15290.1 3-hydroxybutyryl-CoA dehydrogenase 1.81E-119 

Protein metabolism CO092415 0.514 3.33E-02 At3g53620.1 inorganic pyrophosphatase 2.53E-108 

Protein metabolism DN760012 0.629 1.51E-02 At1g15690.1 inorganic pyrophosphatase -related 4.84E-104 

Protein metabolism DW477912.1 0.547 4.14E-02 At3g17760.1 glutamate decarboxylase 2.60E-102 

Protein metabolism CO091240 0.558 4.76E-02 At2g17630.1 phosphoserine aminotransferase -related 2.92E-102 

Protein metabolism AF009568.1 0.478 4.64E-03 At1g15690.1 inorganic pyrophosphatase -related 5.26E-97 

Protein metabolism CO497384 0.513 1.61E-02 At3g23580.1 ribonucleoside-diphosphate reductase small chain 3.91E-95 

Protein metabolism AI055377 0.49 3.33E-02 At5g11520.1 aspartate aminotransferase, chloroplast (transaminase A/Asp3)  2.45E-91 

Protein metabolism DT456038 0.446 5.90E-03 At5g11160.1 adenine phosphoribosyltransferase 2.39E-85 

Protein metabolism DW229616.1 0.627 2.54E-02 At2g16500.1 arginine decarboxylase 9.80E-84 

Protein metabolism AI727870 0.7 3.58E-02 At5g19550.1 aspartate aminotransferase, cytoplasmic isozyme 1  9.80E-79 

Protein metabolism DW227402.1 0.209 1.34E-02 At3g22890.1 ATP sulfurylase -related 4.73E-78 

Protein metabolism DW509152.1 0.426 8.88E-04 At3g53620.1 inorganic pyrophosphatase -related protein 4.90E-77 

Protein metabolism CO086679 0.616 8.79E-03 At1g15690.1 inorganic pyrophosphatase 2.79E-68 

Protein metabolism DT527501 0.539 4.46E-02 At3g46940.1 dUTP pyrophosphatase-related protein 9.01E-65 

Protein metabolism DW502728.1 0.551 2.20E-03 At1g19920.1 sulfate adenylyltransferase 3.04E-62 

Protein metabolism DT543331 0.772 2.11E-02 At1g22410.1 2-dehydro-3-deoxyphosphoheptonate aldolase  5.28E-56 

Protein metabolism DW510782.1 0.565 2.31E-02 At4g34200.1 D-3-phosphoglycerate dehydrogenase (3-PGDH) 6.22E-54 

205 



 

Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Protein metabolism AI728979 0.704 3.22E-02 At5g10330.1 histidinol-phosphate aminotransferase 6.69E-51 

Protein metabolism AI728979 0.704 3.22E-02 At5g10330.1 histidinol-phosphate aminotransferase 6.69E-51 

Protein metabolism DT560839 0.439 1.68E-02 At1g19920.1 sulfate adenylyltransferase 1.19E-45 

Protein metabolism DT463008 0.197 1.52E-02 At3g22890.1 ATP sulfurylase -related  3.97E-37 

Protein metabolism AI731024 0.452 2.51E-03 At5g11160.1 adenine phosphoribosyltransferase 3.63E-36 

Protein metabolism DT051246 0.525 2.60E-02 At2g36880.1 s-adenosylmethionine synthetase -related 4.49E-36 

Protein metabolism DW498800.1 0.232 8.23E-04 At1g15410.1 expressed protein (Aspartate-glutamate racemase family) 5.52E-36 

Protein metabolism DW498800.1 0.232 8.23E-04 At1g15410.1 expressed protein (Aspartate-glutamate racemase family) 5.52E-36 

Protein metabolism CO126813 0.687 4.48E-02 At2g43750.1 cysteine synthase, chloroplast  1.83E-34 

Protein metabolism CO091929 0.469 4.96E-02 At4g13940.1 adenosylhomocysteinase 4.04E-30 

Protein metabolism DW516468.1 0.692 2.25E-02 At1g36370.1 hydroxymethyltransferase -related 4.32E-23 

Protein metabolism DT049585 0.59 2.82E-02 At1g09795.1 AtATP-PRT2 mRNA for ATP phosphoribosyl transferase 6.29E-11 

Protein metabolism CA993525 0.367 3.61E-03 - - - 

Protein metabolism CA993525 0.367 3.61E-03 - - - 

Protein metabolism DV849287 0.179 1.13E-02 - - - 

Protein metabolism DV849287 0.179 1.13E-02 - - - 

Secondary metabolism CO090127 0.718 4.65E-02 At1g68530.1 very-long-chain fatty acid condensing enzyme (CUT1)  0 

Secondary metabolism CO125011 0.766 2.06E-02 At1g44446.1 chlorophyll a oxygenase (chlorophyll b synthase) 1.01E-145 

Secondary metabolism CO091962 0.465 5.81E-05 At4g20840.1 FAD-linked oxidoreductase 6.77E-144 

Secondary metabolism BQ404875 0.376 4.79E-02 At5g22020.1 strictosidine synthase 6.91E-141 

Secondary metabolism AI728347 0.617 5.92E-03 At4g30210.1 NADPH-ferrihemoprotein reductase  8.60E-127 
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Major pathway Public ID Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Secondary metabolism DR455920 0.641 6.09E-03 At5g57800.1 CER1 protein 6.26E-122 

Secondary metabolism CO496470 0.697 2.49E-02 At1g67730.1 short chain dehydrogenase/reductase family protein  3.47E-113 

Secondary metabolism CD486444 0.528 3.14E-02 At2g38700.1 mevalonate diphosphate decarboxylase 9.66E-75 

Secondary metabolism CO126046 0.657 1.08E-02 At5g55350.1 long-chain-alcohol O-fatty-acyltransferase (wax synthase)  9.56E-74 

Secondary metabolism DR463129 0.566 2.31E-02 At5g54010.1 glycosyltransferase family  1.60E-68 

Secondary metabolism AI729300 0.244 3.35E-03 At1g02190.1 CER1 protein 6.14E-67 

Secondary metabolism DT547279 0.709 2.26E-02 At1g77670.1 aminotransferase family  1.40E-66 

Secondary metabolism CO083496 0.676 4.04E-02 At2g23910.1 cinnamoyl-CoA reductase-related 2.22E-64 

Secondary metabolism CO084738 0.504 3.62E-02 At4g12330.1 cytochrome P450 family 5.32E-63 

Secondary metabolism AI730798 0.312 2.32E-02 At5g22020.1 strictosidine synthase family  1.33E-62 

Secondary metabolism CO123007 0.262 4.58E-02 At5g14700.1 cinnamoyl-CoA reductase-related 3.46E-61 

Secondary metabolism AI728058 0.371 4.23E-03 At5g17050.1 glycosyltransferase family  3.02E-50 

Secondary metabolism DR452522 0.697 2.29E-02 At2g23910.1 cinnamoyl-CoA reductase-related 5.89E-47 

Secondary metabolism DT049270 0.264 4.04E-02 At2g37700.1 CER1 protein 3.20E-28 

Secondary metabolism AI054687 0.281 4.55E-02 At1g08470.1 strictosidine synthase-related  3.92E-18 

Secondary metabolism DT052242 0.483 2.54E-02 - - - 
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Table 5 Relative expression (>2 fold) of genes associated with mitochondrial electron transport for cultivars Sicot 53 and Sicala 45 plants grown under high (42 oC) 
temperatures, compared to optimal (32 oC) temperatures in the growth cabinet.  

  

Public ID  Relative 

expression 

Adjusted 

P value 

Arabidopsis hit Arabidopsis hit description E-value 

Up-regulated genes 

DT456151 1.823 2.53E-02 At2g43400.1 electron transfer flavo protein ubiquinone oxidoreductase -related   5.68E-66 

CO091076 1.558 2.83E-02 At5g17400.1 mitochondrial ADP, ATP carrier protein  1.85E-34 

Down-regulated genes 

CO127818 0.4801 3.02E-02 At5g14040.1 mitochondrial phosphate transporter  1.69E-105 

AI731438 0.475 1.89E-03 At5g58970.1 uncoupling protein (AtUCP2)  1.58E-101 

CA992949 0.546 1.08E-02 At2g22500.1 mitochondrial carrier protein family  3.32E-113 

DW500449.1 0.639 6.91E-02 At4g10040.1 cytochrome c several plant cytochrome c  9.94E-56 

DW512717.1 0.641 6.70E-02 At2g29990.1 NADH dehydrogenase family 2.88E-91 

DR463298 0.569 3.19E-02 At2g22500.1 mitochondrial carrier protein family  5.76E-104 

DT053610 0.669 3.99E-02 At4g01100.1 mitochondrial carrier protein family  7.09E-23 

DW233179.1 0.675 2.32E-02 At3g62650.1 expressed protein putative mitochondrial carrier protein  9.79E-25 

AI726701 0.649 4.57E-02 At5g14040.1 mitochondrial phosphate transporter  6.03E-98 

BQ412199 0.631 9.94E-03 At5g19760.1 mitochondrial 2-oxoglutarate/malate translocator 2.42E-125 

DW485545.1 0.689 3.12E-02 At2g47490.1 mitochondrial carrier protein family  1.46E-57 
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Table 6 Relative expression (2-fold) of genes associated with the photosynthetic pathway for Sicot 53 and Sicala 45 plants grown under high (42 oC) temperatures 
compared to optimal (32 oC) temperatures in the growth cabinet. 

Public ID  Relative 

expression 

Adjusted 

P value 

Arabidopsis 

hit 

Arabidopsis hit description E-value 

Up-regulated genes 

DN800322 2.237 1.20E-02 At1g06680.1 Oxygen-evolving enhancer protein 2; calcium ion binding  5.11E-85 

CO072814 2.449 3.50E-03 At2g28000.1 RuBisCO subunit binding-protein α subunit, chloroplast 60 kDa chaperonin  1.67E-154 

CO121719 2.455 1.37E-02 At2g28000.1 RuBisCO subunit binding-protein α subunit, chloroplast 60 kDa chaperonin  3.75E-107 

DR458096 2.003 4.73E-04 At2g28000.1 ATP binding protein binding  0 

DV849478 3.338 2.27E-05 At2g28000.1 RuBisCO subunit binding-protein alpha subunit/60 kDa chaperonin alpha  8.87E-23 

Down-regulated genes 

DV848944 0.344 1.68E-01 At1g42970.1 glyceraldehyde-3-phosphate dehydrogenase B subunit  0 
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Table 7 Genes for Sicot 53 that are up-regulated or down-regulated in response to heat stress in the growth cabinet 

Pathway Public ID Relative 

expression 

P value Arabidopsis Hit 

Name 

Description E-Value 

Up-regulated genes 

Lipid metabolism DR458005 2.31 4.87E-02 - - - 

Miscellaneous AI729487 3.16 4.57E-02 At5g53430.1 trithorax 5 (TX5) 3.22E-163 

Not assigned CA993412 2.47 4.57E-02 - - - 

Not assigned DT465816 3.16 4.57E-02 - - - 

Not assigned DW507443.1 2.98 4.69E-02 At2g19310.1 small heat shock protein -related 2.36E-24 

Not assigned AI727913 3.31 4.87E-02 At1g70090.1 glycosyltransferase family 5.08E-132 

Not assigned BM358962 3.12 4.45E-02 - - - 

Not assigned DR456718 3.27 4.87E-02 - - - 

Not assigned DR460676 2.25 4.84E-02 - - - 

Not assigned DT049773 20.35 4.45E-02 At2g32120.2 heat shock protein hsp70t-2 6.89E-45 

Not assigned DT050039 6.52 4.57E-02 At1g64660.1 methionine/cystathionine gamma lyase 1.14E-69 

Not assigned DT050385 5.15 4.69E-02 At3g23990.1 chaperonin (CPN60/HSP60), mitochondrial precursor 1.35E-10 

Not assigned DT458200 3.35 4.57E-02 - - - 

Not assigned DT467180 9.02 4.57E-02 At5g12020.1 class II heat shock protein 1.12E-35 

Not assigned DW503697.1 89.07 4.45E-02 At1g07400.1 heat shock protein 1.40E-49 

Not assigned DW520166.1 2.76 4.69E-02 At2g31080.1 reverse transcriptase family protein 1.57E-10 

Protein metabolism DN781218 13.36 4.57E-02 At5g07330.1 68412.m00774 expressed protein   2.33E-32 

Protein metabolism DT456271 2.82 4.45E-02 - - - 

Protein metabolism DW509391.1 5.83 4.69E-02 At3g25270.1 68410.m02887 hypothetical protein 2.90E-08 

Protein metabolism DW511109.1 4.25 4.84E-02 - - - 

Stress DT046994 4.81 4.69E-02 At3g16050.1 ethylene-inducible protein 5.09E-24 

210 



 

Pathway Public ID Relative 

expression 

P value Arabidopsis Hit 

Name 

Description E-Value 

Stress DT048069 2.52 4.69E-02 At2g41540.2 glycerol-3-phosphate dehydrogenase 6.12E-19 

Stress DW506829.1 3.41 4.45E-02 At5g65260.1 RNA recognition motif (RRM) 1.68E-90 

Down-regulated genes 

Not assigned CO076413 0.07 4.57E-02 At5g54770.1 thiazole biosynthetic enzyme precursor (ARA6) (sp Q38814) 2.81E-140 

Protein metabolism CA993457 0.06 4.57E-02 At5g54770.1 thiazole biosynthetic enzyme precursor (ARA6) (sp Q38814) 3.59E-142 

Stress DT054070 0.25 4.57E-02 At2g21660.2 glycine-rich RNA-binding protein (AtGRP7) SP|Q03250 3.74E-38 

Stress DT461768 0.26 4.45E-02 At2g21660.2 glycine-rich RNA-binding protein (AtGRP7) SP|Q03250 2.52E-36 
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Table 8 Genes for Sicala 45 that are up-regulated or down-regulated under high temperature stress in the growth cabinet 

Pathways Public ID Relative 

expression 

P value Arabidopsis 

Hit 

Description E-Value 

Up-regulated genes      

Carbohydrate metabolism DT465978 19.62 4.44E-02 At2g29500.1 small heat shock protein -related  1.39E-56 

Cell & Development DN760147 2.87 1.99E-02 - - - 

Lipid metabolism DR453388 5.01 4.44E-02 - - - 

Not assigned DR460975 2.47 4.10E-02 - - - 

Not assigned DT047239 4.25 1.99E-02 - - - 

Not assigned DT050039 14.78 1.99E-02 At1g64660.1 methionine/cystathionine gamma lyase  1.14E-69 

Not assigned DT465816 3.37 4.03E-02 - - - 

Not assigned DW506829.1 4.12 2.71E-02 At5g65260.1 RNA recognition motif (RRM) - containing protein  1.68E-90 

Not assigned AI727895 2.18 4.03E-02 At1g16210.1 For proteins ESTs gb|T04357 and gb|AA595092 4.85E-52 

Not assigned DN757824 18.36 2.26E-02 At5g37670.1 heat shock protein family  2.20E-38 

Not assigned DN759807 3.03 4.10E-02 - - - 

Not assigned DN760566 14.87 4.33E-02 At5g52640.1 heat shock protein 81-1  7.11E-76 

Not assigned DR455377 2.32 4.03E-02 - - - 

Not assigned DR460676 2.68 3.97E-02 - - - 

Not assigned DT050385 4.75 2.27E-02 At3g23990.1 chaperonin (CPN60/HSP60)  1.35E-10 

Not assigned DT456529 2.74 4.44E-02 At2g23090.1 expressed protein  6.34E-12 

Not assigned DT463334 8.43 1.54E-02 - - - 

Not assigned DT463678 2.65 4.10E-02 - - - 

Not assigned DT463965 11.03 3.97E-02 - - - 

Not assigned DT545357 3.2 2.86E-02 At4g25200.1 mitochondrion-localized small heat shock protein  4.99E-62 

Not assigned DW493548.1 3.13 4.57E-02 At4g02450.1 glycine-rich protein  1.11E-30 
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Pathways Public ID Relative 

expression 

P value Arabidopsis 

Hit 

Description E-Value 

Not assigned DW501150.1 3.38 3.97E-02 At1g14980.1 10 kDa chaperonin (CPN10)  4.21E-41 

Not assigned DW503063.1 34.94 4.93E-02 At5g52640.1 heat shock protein 81-1  2.42E-112 

Not assigned DW506473.1 10.2 3.97E-02 At5g18650.1 expressed protein  3.33E-114 

Protein metabolism DN780838 3.26 3.97E-02 At3g03150.1 expressed protein  5.74E-28 

Protein metabolism DR455485 3.07 3.97E-02 At1g01940.1 expressed protein  2.73E-79 

Protein metabolism DT048450 2.71 4.03E-02 At2g32520.1 carboxymethylenebutenolidase -related  3.65E-105 

Protein metabolism CA992712 7.12 3.32E-02 At5g52640.1 heat shock protein 81-1  8.99E-66 

Protein metabolism CO087722 3.13 1.99E-02 At2g32520.1 carboxymethylenebutenolidase -related  3.46E-111 

Protein metabolism DW503054.1 5.67 2.26E-02 - - - 

Protein metabolism DW503697.1 96.75 1.54E-02 At1g07400.1 heat shock protein, putative  1.40E-49 

Protein metabolism DT052182 2.71 4.44E-02 At2g31080.1 reverse transcriptase family protein  7.86E-06 

Protein metabolism DR458062 2.28 3.32E-02 At5g27620.1 cyclin family similar to SP|P51946 Cyclin H  5.01E-37 

Protein metabolism DT464151 2.49 3.95E-02 - - - 

Protein metabolism DW520572.1 2.63 4.10E-02 - - - 

Protein metabolism CO123341 2.23 4.44E-02 At1g62740.1 stress inducible protein (sti), putative  9.59E-82 

Protein metabolism,  

Cell & development 

DT048369 3.36 4.44E-02 - - - 

Protein metabolism,  

Cell & development 

CO132723 5.02 1.99E-02 At4g11660.1 heat shock factor protein 7 (HSF7)  1.05E-57 

Secondary metabolism AI731478 5.06 1.99E-02 At5g02810.1 pseudo-response regulator, APRR7  6.41E-22 

Secondary metabolism CA992719 56.33 3.93E-02 At4g10250.1 endomembrane-localized small heat shock protein  3.92E-31 

Secondary metabolism DW505128.1 6.98 4.44E-02 At4g27670.1 small heat shock protein, chloroplast precursor(HSP21)  1.96E-25 

Secondary metabolism DW514802.1 3.67 4.44E-02 - - - 
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Pathways Public ID Relative 

expression 

P value Arabidopsis 

Hit 

Description E-Value 

Signaling & transport DT457280 2.94 3.97E-02 - - - 

Stress DR459244 3.48 3.92E-02 - - - 

Stress DT047015 3.29 3.97E-02 At5g20720.2 chloroplast Cpn21 protein  1.00E-45 

Stress DT049773 25.71 4.23E-02 At2g32120.2 heat shock protein hsp70t-2  6.89E-45 

Stress DT456083 2.53 4.44E-02 - - - 

Stress DT456194 2.35 4.44E-02 - - - 

Stress DT458200 3.16 4.44E-02 - - - 

Stress DV850132 15.42 4.44E-02 At5g47220.1 ethylene responsive element binding factor 2  7.88E-43 

Stress, Protein metabolism DR454255 4.14 3.95E-02 At1g80160.1 glyoxalase family protein  1.02E-63 

Stress, Protein metabolism DW511109.1 4.35 4.44E-02 - - - 

Down-regulated genes      

Cell & Development DW485677.1 0.47 4.10E-02 At2g18960.1 ATPase 1, plasma membrane-type  0 

Miscellaneous DT051905 0.26 4.44E-02 At2g01830.2 histidine kinase -related  6.46E-58 

Not assigned AI727247 0.42 3.32E-02 At4g39220.1 AtRer1A  1.76E-72 

Not assigned CA993457 0.04 1.54E-02 At5g54770.1 thiazole biosynthetic enzyme precursor (ARA6)  3.59E-142 

Not assigned CO127856 0.24 1.54E-02 At5g08260.1 serine carboxypeptidase II  4.51E-165 

Not assigned DR457567 0.34 4.10E-02 At4g16370.1 isp4 like protein  1.69E-151 

Not assigned DW225341.1 0.24 4.44E-02 - - - 

Not assigned DR455218 0.39 3.32E-02 At5g03300.1 pfkB type carbohydrate kinase protein family  6.49E-82 

Not assigned DT048453 0.19 4.23E-02 At2g46210.1 delta-8 sphingolipid desaturase 4.44E-52 

Not assigned DT052025 0.2 4.10E-02 - - - 

Not assigned DT054070 0.2 4.44E-02 At2g21660.2 glycine-rich RNA-binding protein (AtGRP7)  3.74E-38 

Protein metabolism DW224339.1 0.24 4.03E-02 At5g27150.1 sodium proton exchanger (NHX1)  8.76E-15 
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Pathways Public ID Relative 

expression 

P value Arabidopsis 

Hit 

Description E-Value 

Protein metabolism DN799904 0.47 4.10E-02 At4g03230.1 receptor kinase -related   4.75E-101 

Protein metabolism DT461573 0.48 4.10E-02 - - - 

Protein metabolism DW225422.1 0.3 4.44E-02 At1g17345.1 auxin-induced (indole-3-acetic acid induced) protein  1.60E-25 

Protein metabolism,  

Cell & development 

DN779370 0.12 1.99E-02 At1g15060.1 expressed protein  1.88E-72 

Secondary metabolism DW513352.1 0.49 4.44E-02 At1g50430.1 sterol delta-7 reductase (7-dehydrocholesterol reductase)  2.93E-45 

Secondary metabolism CO091962 0.43 4.44E-02 At4g20840.1 FAD-linked oxidoreductase family 6.77E-144 

Secondary metabolism DW503233.1 0.47 4.03E-02 At3g02750.1 protein phosphatase 2C (PP2C)  2.62E-114 

Signaling & transport DT048308 0.29 4.33E-02 At2g40840.1 glycosyl hydrolase family 77  2.73E-20 

Stress CO076413 0.04 1.99E-02 At5g54770.1 thiazole biosynthetic enzyme precursor (ARA6)  2.81E-140 

Stress DT461768 0.23 4.05E-02 At2g21660.2 glycine-rich RNA-binding protein (AtGRP7)  2.52E-36 

Stress DW510614.1 0.37 3.92E-02 At2g17610.1 reverse transcriptase family protein  1.91E-12 
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