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1 Light use and leef gas exchange 

.. .leaves seem also designed for many other noble and :< 3 
important services, plants very probably drawing thio' their 
leaves some part of their nourislunent from the air. May not 
light also, by freely enp ring the expanded ~u~ of leaves 
and flowers, contribute much to the enobli~ rrinciples 
of vegetables?... I / 
(Skphm H<'fa, 'V<$dablt Statitlts' 1727) • 

Chloroplasts dividing (dumbell fig. 
urn) withia an enlarging cell o! a 
young spinach leaf, ruultlng in 
about 200 chloroplasts per cell at 
leaf maturity (Nomanki oplics) 
(Ughl 111im>grap/l courtay John l'oJsinglutt11) 

Chapter outline 

Introduction 
1.1 Leaf anatomy, light interception and gas exchange 

1.1.1 Leaf structure 
1.1.2 Light absorption 
1.1.3 C02 diffusion to chloroplasts 
1.1. 4 Light and C02 etfects on leaf photosynthesis. 
CA~E STUDY Development of A:p; curves 

1.2 Chloroplasts and energy capture 
1.2.1 Chloroplast structure and composition 
1.2.2 Chlorophyll absorption and photosynthetic 

action spectra 
1.2.3 Cooperative photosystems and a 'Z' scheme 

for dectron flow 
1.2.4 Photophosphorylation andATP synthesis 
1.2.5 Chlorophyll fluoresence 

1.3 Conclusion 
Further reading 



2 Carbon dioxide assimilation and respiration 

Chapter outline 

Introduction 
2.1 Modes of photosynthesis 

2.1.1 Photosynthetic carbon reduction 
2.1.2 RuBP regeneration 
2.1.3 Sucrose and starch synthesis 
2.1.4 Properties ofRubisco 
2.1.5 C4 photosynthesis 
FEATURE ESSAY C4 photosynthesis 
2.1.6 Crassulacean acid metabolism (CAM) 
2.1.7 Submerged aquatic macrophytes (SAM) 
2.1.8 Metabolite fiux and organelle transporters 

2.2 C4 subgroups 
2.2.1 Evolution ofC4 mode 
2.2.2 Concentrating C02 in BS cells 
2.2.3 Regulation of C4 photosynthesis 
2.2.4 Environmental physiology 

2.3 Photorespiration 
2.3.1 Evidence for photorespiration 
2.3.2 Substrates for photorespiration 

Chapter 2 quote to come 

Rublsco (ribulose• 1,5-bbphosphate 
carboxylase/oxygenase) is the most 
abundant single protein on earth 
ll!ld is pivotal for C01 usimilacion 
by aU plants. In higher planb, the 
holoemyme consists or eight large 
1ubunlts, each with • molecular 
nuss of 50-SS kD (identified in (b) 
below), and eight mull subunits of 
molecular mus tz-18 kD (not 
shown). Large subunits are encoded 
by a single gene In the chlotoplast 
genome whUe a family of nudear 
genes encode the small subunits. 

Any loss of catalytic effectivess 
or reduction in amount traJ1Slates 
to slower photo$)'nthesls and 

reduced growth. Tubacco plants (a) 
tnmformed with an antisense con· 
scruct against Rubisco (anti-
Rubilco) grow more slowly than 
wild rypes due to • 60% reduction 
in photosynthetic rate. 
lmmunodeteccion of the large sub-
unit polypepdde of Rubisco with 
an anli·Rubisco antiserum (b} 
shows that the anci-Rubisco trans-

genic plants contain ltH than SO~• 
of the Rubisco detected in wild· 
type tobacco plants. (Vertical bar 
in (a) = 10 an) 
(1'11010 tountsy 5sud1111t ""'' CM111111errr; 

origi11~I im111u11oblot tountsy MdrtM 
Lui wig) 

2.3.3 Localisation of photorespiration 
2.3.4 C4 plants and unicellular algae 
2.3.S Does phocorespiration represent Jost produc-

tivity? 
2.4 Respiration and energy generation 

2.4.1 Starch and sucrose degradation 
2.4.2 The glycolytic pathway 
2.4.3 Pentose phosphate pathway 
2.4.4 Mitochondria and organic acid oxidation 
2.4.5 Respiratory chain 
2.4.6 Oxidative phosphorylation 
CASE STUDY 2.1 Knobs tmd ATP synthase 
2.4.7 An alternative oxidase 
FEATURE ESSAY 2.2 Thermogenesis 
2.4.8 Interactions between mitochondria and 

chloroplasts 
2.4.9 Energetics of respiration 

Further reading 



3 Gaining water and nutrients (root Junction) 

Chapter outline 

Introduction 
3.1 Root system architecture 

3.1.1 Introduction 
3.1.2 Root architecture and uptake of nutrients 
CASE STUDY 3.1 Cluster (proteoid) roots 
3.1.3 Root architecture and uptake of water 

3.2 Extracting water and nutrients from soil 
3.2.1 Where are water and nutrients found in soil? 
3.2.2 Water flow through soil to roots 
3.2.3 Calculating water depletion 210und roots 
3.2.4 Observations of water uptake by roots 

3.3 Soil-root interface 
3.3.1 Rhizosphere chemistry 
3.3.2 Rhizosphere biology 
3.3.3 Costs and benefits of a rhizosphere 

3.4 Mycorrhizal associations 
3.4.1 Main types ofmycorrhizas 
3.4.2 Fungus-root interfaces 
3.4.3 Functional aspects of mycorrhizas 

A radicle may be compared with a burrowing mole, which 
wishes to penetrate perpendicularly into the ground. By con-
tinually moving its head from side to side, or circwnnutating, 
he will feel any stone or other obstacle, as well as any dif-
ference in the hardness of the soil, and he will turn from that 
side; if the earth is damper on one than the other side he will 
turn thitherward as a better hunting-ground. Nevertheless, 
after each interruption, guided by the sense of gravity, he will 
be able to recover his downwani course and bunow to a greater 
depth. 
(C"4tlt1 DrlMn, The ~of Mwemcnt in Pl:anu. 1881) 

Seedlings of E11ailyptus g/06,,1111 
which have formed aa. ectomycor-
rhlal usociaaon with the fungu5, 
Htl>tlom4, whoae white mycellum 
caa be seen ramifying tbniugh the 
aoil aod forming basidiomes (toad-
stools) above the soil. (see Colour 
Plate xx) 

3.5 Symbiotic nitrogen fixation 
3.5.1 Acquiring atmospheric nitrogen 
3.5.2 A range of Nrftxing associations 
3.5.3 Rhizobial associations 
3.5.4 Linking functions with structures 
FEATURE ESSAY 3. Protecting nitrogenase.ftom oxygen 
3.5.5 Measuring N2 fixation 

3.6 Absorption of water and nutrients by roots 
3.6.1 Radial uptake: a.dynamic component of 

resource acquisition 
3.6.2 Extracting water and nutrients via the rhizos-

pheie 
3.6.3 Pathways and fluxes 
3.6.4 Barrieis to apopl:ismic flow 
3.6.5 Tr.uuport of water and solutes 
3.6.6 Testing root function 
3.6.7 Axial versus radial ftow 

Further reading 
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4 Using water and nutrients (cell growth) 

Chapter outline 

Introduction 
4.1 Membrane transport and ion balance 

4.1.1 Osmotic engines for plant function 
4.1.2 Transport of molecules across cell membranes 
CASE STUD'/ 4.1 The power of biological pumps 
4.1.3 Membrane proteins - catalysts for transport 

4.2 Regulation of nutrient ion exchange 
4.2.1 Compartments, channels and transporters 
4.2.2 Transport in cells and tissues 
4.2.3 Patch clamping 
4.2.4 Patch clamping: a window on ion regulation 
4.2.5 Turgor pressure controlling ion fl.ow 
4.2.6 Ttansport proteins underlying the dual mech-

anism of potassium uptake 
4.2.7 Regulation of carrier proteins 
4.2.8 Nutrient transport through plants 

4.3 Cell enlargement 
4.3.1 Water relations 
4.3.2 Cell wall expansion 

The almost infinite variety of vegetable forms, which Juve been 
grouped into no less than 82,606 distinct species, is formed 
ofbut one elementary material, made up of multitudes of lit-
tle vesicles or bladders, called CELLS. The tissue of which 
they are composed, when first formed, is called cellulose. The 
different forms of this TISSUE are held together by a living 
mucus, a gummy fluid, out of which the tissue itself is made. 
(C. &ka Plants, I~ E•rth nm/ Mitt""11s, 111iJ-11in<tmtlh Ct11fury) 

A sequenc'e of 1upuimpond 
image• c:11pruru thr Jlower column 
nf a iriaer plant (Stylidlum cr:wi-
folium) as It 'fins• in HJPONe co a 
ph71ical ttimulu• (in na.lure, an 
iiuKt). A 1 cm column rotates 
chrough more chan 200° from a 
)cocked position' in 10-30 rm 
(photograplu rakm at 2 rm inter-
vah) . Tbe kiaetlc e111igy manifest· 
ed in thi.J rap Id fir in tr ii derived 

liom eve11ts conaolled at a mem-
brane levels. Ions 1nnsported into 
&p«iallsed cells cause hydrostatic 
(turgor) prmure to develop which 
is 1udcknly dissipated following 
mechanical stimalation. Simibr 
rapid mov•meents occur in 
mimosa (sensiliw plant) and some 
carnivorow plants 
(BN<li on Fi11Jl•y a11J Findlay 197 S, mid 
«pt•doaJ ,,,;1h pmnis1ia11) 

CA.SE STUDY 4.2 A perspective on plants: significance of 
cell walls 
4.3.3 

4.3.4 

Application of water relations equations to 
growing cells 
Cell will properties: determinants of growth 
rate 

4.3.5 How rapidly do cell walls respond to changes 
in P? 

4.3.6 Biochemical processes in walls of growing 
cells 

Further reading 
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5 Vascular integration and resource storage 

Chapter outline 

Introduction 
5.1 Long-distance transport of water and nutrients 

5.1.1 Introduction 
5.1.2 Experimental history: how the Cohesion 

Theory came to be accepted 
5.1.3 Xylem as an effective conduit for sap 
5.1.4 Speed of sap flow 
5.1.5 Solute transport via transpiration 

5.2 Vein endings and export pathways 
5.2.1 Introduction 
5.2.2 The pipeline: leaf vein architecture 
5.2.3 Damage control 
5.2.4 Unit pipe: generalised vein structure 
5.2.5 Water extraction from the pipeline 
5.2.6 Solutes in the transpiration scream 
5.2.7 Solute recycling: phloem export 
5.2.8 Solute recycling: scavenging cells 
5.2.9 Solute excretion 

... what quantities of moisture trees do daily imbibe and per-
spire: now the celerity of the sap must be very great, if that 
quantity of moisture must, most of it, ascend to the top of the 
tree, then descend, and ascend again, before it is carried o.ffby 
perspiration. 
(S. Hales, Vf$tablt Sldlitks, I 727) 

Surface view of deared whole 
mount of a wheat leaf showing 
large and small panllel vrins 
(mauve). Unes of scomata (orange 
guard ctlb) lie along the .8anks of 
theae veins. Water evaporates &om 
the wet walls of mesophyll cells 
below the stomata, drawing W11ter 
&om the veios through sheath 
cells. Bar repnsencs 100 ,.m (see 
Colour Plate xx) 
(PIU1togr11ph touttay Margiim MfC11/ly) 

5.3 Distribution of photoassimilates within plants 
5.3.1 Introduction 
5.3.2 Source-path-sink concept 
5.3.3 Source-path-sink transport processes 
5.3.4 Photoassimila.te transport and biomass 

production 
5.3.5 Whole-plant distribution of photoassimilate 
CASE STUDY 5.1 Differential partitioning of carbon and 

nitrogen in a nitrogen..Jixing legume 
5.4. Phloem transport 

5.4.1 Introduction 
5.4.2 Characteristics of phloem transport 
5.4.3 Chemical nature of translocated material 
5.4.4 Phloem fiux 
5.4.5 Mechanism of phloem translocation 
5.4.6 Control of assimilate transport fiom source to 

sink 
5.5 Phloem loading 

5.5.1 Introduction 
5.5.2 Pathway of phloem loading in source leaves 
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6 Growth analysis: a quantitative approach 

Chapter outline 

Introduction 
6.1 Concepts and techniques 

6.1.1 Cell populations 
6.1.2 Plant biomass 
6.1.3 Leaf area 

6.2 Environmental physiology 
6.2.1 Light 
6.2.2 Temperature 
6.2.3 Carbon dioxide 
6.2.4 Nutrients (nitrogen and phosphorus) 
6.2.5 Light X nutrients 
6.2.6 C02 X nutrients 
6.2.7 Water 

6.3 Developmental physiology 
6.3.1 Biomass distribution 
6.3.2 Size and ontogeny 
6.3.3 Reproductive development 

... and he gave it for his opinion, that whosoever would make 
two ears of corn or two blades of grass to grow where only 
one grew before would deserve better of mankind, and do 
more essential service to his country, than the whole race of 
politicians put together ... 
U•ndll!An Swift, Cullim Tra1></J, 1726) 

Highly produccive multiple crop-
ping in a co,-enriched greenhouse 
at csmo Merbeln, 1978 
(Originnl phologMph to•rmy Trd Ltwto11) 

6.4 Crop growth analysis 
6.4.1 Concepts 
6.4.2 Light-use efficiency 
6.4.3 Potential crop growth rate 
6.4.4 Respiratory losses 

6.5 Respiratory efficiency and plant growth 
6.5.1 Carbon economy of fast- versus slow-growing 

plants 
6.5.2 Energy generation 
6.5.3 Energy utilisation 
6.5.4 Methodology 
6.5.5 Energy use by roots 
6.5.6 Growth efficiency and crop selection 
6.5. 7 Suboptimal envirorunents 

6.6 Concluding remarks 
Further reading 



7 . Plant growth and options for reproduction 

We should always keep in mind the obvious fact that the pro-
duction of seed is the chief end of the act of fertilisation; 
anthat this end can be gained by hermaphrodite plants with 
incomparably greater ceminty by self-fertilisation, than by the 
union of the sexual demencs belonging to two distinct B.ow-
ers or plants. Yet it is unmistahbly plain that innumerable 
flowers are adapted for cross-fertilisation. 
(Ch<11los Da,..;11, Tht Ejfttu ef Crou •ntl Sdf F<rtili1•6011 in the ~tAblt King.10111, t 816) 

FiEUR 7.0 Developing pineapple 
inflorescence showing 1pinl 
phylloWtls 
(PlioMgr«p/1 courtos y C. C. N. 1ilmbu/Q 

Chapter outline 

Introduction 
7 .1 Axial growth: shoot and root development 

7.1.1 Root apical meristems· 
7.1.2 Shoot apical meristems 
7.1.3 Meristems as templates for morphogenesis 
7 .1. 4 Meristems responding to their environment 

7 .2 Options for reproduction 
7.2.1 Timing of reproduction 
7.2.2 Vegeative options for reproduction 
7.2.3 Aoral biology and sexual reproduction 
7.2.4 Soutces of genetic variation and restrictions 

on breeding 
FEA~ ESSAY 7 .1 Self llnd non-self: recognitiott processes 
in .flowering plants 

Further reading 
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8 Physical cues for growth and reproduction 

Chapter outline 

Introduction 
8.1 Latent life: dormancy 

8.1.1 Dornuncy: the phenomenon of suspended 
animation 

8.1.2 Seed dornl2ncy 
FEATURE ESSAY 8. Dormancy in wheat grains: nature 
and practical application 
8.1.3 Bud dormancy 
8.1.4 Physiological control of dormancy 

8.2 Plant and organ orientation 
8.2.1 Tropisms 
8.2.2 Gravittopism 
8.2.3 Gnvity perception 
8.2.4 Thlgmotropism 
8.2.5 Phototropism 
8.2.6 Nastic movements 

Amongst other fundamental properties, the protoplasm of 
plants is endowed with that of inita.bility, a certain sen~ 
sitiveness, that is, to the influence of external agents. 
,Sydney Howard Vine$, I.Muta on IM Physiology of Plimu, 1886) 

On the one hand, the fanner is concerned with the Jiving 
plant; on the other, with that complex set of factors we call 
the environment ... A plant, like an animal, is a sensitive liv-
ing thing. Plants make responses to their environment [which] 
. . . may be expressed in tons of leaves and stems, in tons of 
roots, in pounds of seed or grain, in barrels of fruit, or in per 
cent of sugar, or starch, or acid . . . First, we must understand 
something of the structure and functions of the plant. Second, 
we must have a knowledge of the various factors of the envi-
ronment. And, third, we must know the manner in which the 
plant behaves under a given set of conditions. T his is a big 
order. It is asking much. 
(Wr!frtd W. Robins, Pri1ttipl<S of plam trolllth, 1927) 

Adaplabon of• tempente plant, peada, to croppiDg in tli• sub-aopica. 
This variety, Flordaldng, bu bec11 bred widl reduced dornwicy whim con-
fen •'low chill' requirement. This allows the nproduclin cycle to proceed 
at laritudca (29•S In this huta.ace) where winlen a.re ln111ffidendy cold to 
break the deepa dormancy of normal 'high chill' varieties. Developing 
.8011JCr1 wen ucised from within the protective bud scales over a period 
from euly autumn (Much, left) to mid-win«r (July, right) and show con-
tfoued slow growth lluooghour (? see CoJoor Plate xx) 
(PlwtogMph courtesy JJ. LJoyd a11d C.G.N. Turnbull) 

8.3 Reproduction 
8.3.1 A time to flower 
8.3.2 The processes of floral induction and initia-

tion 
8.4 Photoreceptors and light cues 
Further reading 
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Plant hormones: chemical signalling in plant 
development 

Consider .. . a plant not as a packaged collective of indepen-
dent processes but as a highly interactive network of percep-
tion, control and feedback. Every plant has a genetic blue-
print that specifies its whole rmgc of morphology and phys-
iology, but the individual is shaped, sometimes literally, by the 
envirorunent it experiences. Integration of development and 
adjwonent to the external enviro1U11ent are achieved through 
multiple coordinating signals throughout the plant. 

Perception of gibberellin ill germl-
nacing cenala. Protoplarts (P) iso-
lated &om aleucone cells of wild 
oac (Avena fatua) wwe incubated 
with Sepbarose beads (S) to which 
glbbecellin molecules had been 
covalendy artached. Th41 gibbereWn 
therefore could not eottt the cells, 
bot wu 1till able to induce produc-

Chapter outline 

don of a.amylue nazyme. This 
meam !Mt ~rcepdon of gib-
berelll.o. probably occurs via and 
outward-facing receptor In the 
plauna membrane. Scale bar = 
60 ,.m (? tee Colour Plate n) 
(Rqmxluwl, with pm11i11ion,fro111 Hool')' 
ti•'· (1991) 

9 .1 The basis of chemical control of plant development 
9.1.1 Introduction·: the need for communication 
9.1.2 Signal sources: which tissues make hormones? 

How are hormones synthesised? 
9.1.3 How mobile are plant hormones? 

9.2 Physiology of hormone action 
9.2.1 Signal targets: perception and s.ignal transduc-

tion 
9.2.2 Diverse roles for plant hormones 
FEATIJRE ESSAY 9.1 Models for control ef shoot branching: 
more than just auxin and cytokinin 
9.2.3 Direct effects on cellular processes 
9.2.4 Modified gene expression 

9.3 H arnessing hormones: making use of chemical signals 
9.3.1 Manipulating growth and development with 

applied plant growth regulators 
9 .3.2 Control though genetic alterations 
9.3.3 Conclusions: the future of plant hormone 

research 
Further reading 
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Differentiation and gene expression 

Simply, the organism is a unique result of both its genes and 
the temporal sequence of envirorunents through which it has 
passed, and there is no way of knowing in advance, fiom the 
DNA sequence, what the organism will look like, except in 
general terms. 
(R. C. /.,.nilontin (t !19?) 'Q11ts, •11vironmm1, am/ organisms', Hitldtn Hiltcria of S(imtt, ttl. 

R.B. Sill'm, 115-140, Gram• &olu: London) 

Ripening of &uic 1uch a1 1om•to 
luvolve1 • tightly regubted 
sequence of physJologic.J lunsl-
cions and changes in expnssio11 of 
1evual ge11H, will> the plant hor-
mone ethylene playing• coo<Cllnat• 
ing role. The vit.ible colour chaoge 
from green to nd is due ro chloro-
phyll degradation and 1yntht1Jis of 
ttd lycopea• pigment • .fuound this 
time respintion rate ioctt•HJ, edt-
ylene 1}'11thHi1 accelerates, cell wall 
1oftming g•nes are expreued, 

Chapter outline 

Introduction 

UOl'll8 aid llll\'Our compound• ue 
synihe.sised, and achu and 1tarcb 
are converud to 1ugu1. Overall, 
this packaging is an •tttactive food 
to many anim81s and the benelil to 
the pla.nt Is increased proba biliry of 
1ud disper1al (ne Colour Place xx) 
(Pl1atogT11plt tourtesy ).D. Hamill) 

10.1 Cellular development and coordination 
10.1.1 Generating cells and organelles: control of 

division processes 
10.1.2 Cellular integration 
FEit.TUR.£ ESSAY 10.1 Communication between plant cells 

10.2 Options for differentiation 
10.2.1 The concept of rotipotency 
10.2.2 Types of differentiation 

10.3 Gene expression 
10.3.1 Gene expression and protein synthesis 
10.3.2 Genome interactions 
10.3.3 Gene regulation during development 
10.3.4 Gene expression modified by external factors 
CASE snJDY 10.1 Plant-pathogen interactions: pathogens 
as biotic stress factors 

10.4 Modified genomes: genetic engineering 
10.4.1 Transformation systems 
10.4.2 Transgenic plants 

Further reading 



11 Fruit growth and postharvest physiology 

A gnpe i1 a 'berry', so !hat fruits on Sultana gnpe.rines are Heno1permo• 
carpic berries! Pollination and fertilisation were successful, but embryos 10 

formed ooon aborted. Pericup ti11ues none lhe ll'H continaed !heir de•••I· 
opment to produce the familiar item of convnuce about 100 d b ru. A 
ninge of Sbges In that developme11t ls 1hown here. Upper-row fruit iUus-
tnite 11&ge1 in prowni.ison development wher<! fruit are unall, hard, green 
and 1ccumulatlng organic acid. Postwrai1on hit (lower i:ow) are translu-
cent, soft tellCUred, enlarging rapidly and accumulating sugar. (Vertical bar 
= S mrn) 
(Ori.fin•/ pltotogmpl1 eownay Tu LAwt•"· CSIR.O Horlit1'11"1r, Mttb6~, Virrori•} 

Chapter outline 

Introduction 
11.1 Onset of fruit growth 

11.1.1 Early events 
11.1.2 Origin of fruit tissues 
11.1.3 Fruit set 

11.2 Dymm.ics of fruit growth 
11.2.1 Time-course 
11.2.2 Cell division and enlargement 
11.2.3 Cell differentiation 
11.2.4 l{jwifruit development: a case study 
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Whence it is probable, that the use of these leaves, (which are 
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(Stqih<tt H11la, ~i.blo SMtirlu, 1727) 
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12.1.3 Sun/shade acclimation and rainforest gaps 
CASE STUDY 12.1 Interadion of light and nutrients on 

rainforest seedlings 
12.1.4 Sunfiecks 

12.2 Ultraviolet radiation 
12.2.1 Ultraviolet radiation on an ancient earth 
12.2.2 Ultraviolet attenuation by a modern earth 
12.2.3 Ultraviolet radiation and plant biology 

12.3 Agricultural production 
12.3.1 PAR and yield 
12.3.2 Leaf area index and anopy light climate 
12.3.3 Light use efficiency 

12.4 Forest production 
12.4.1 Canopy architecture 

The device by which an organism maintains itself stationary 
at a fairly high levd of orderliness (= fairly low level of 
entropy) really consists in continually sucking orderliness from 
its environment ... plants ... of course, have their m ost power-
ful supply of'negative entropy' in the sunlight 
(&hratlinga 1!1144) 

Shaft& of Janlight penetrale a forut 
of A•11url• hctcrDpbyll4 at Poinc 
Blackboarae oa Norfolk Jsb:ad 
(Orizi,.al phototmph '"'""'Y D.H. A1h1cn) 
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... it is through their leaves that plants ... draw some part of 
their nourishment from the air ... 

Lower surface of a tomato leaf 
showing a 'forest' of epidermal 
hairs and an abundance of tiny 
1tomata through which planu 
'draw some part of their nourish-
mrnt'! (Scale bar = 100 µm) 
(Origittal samtti11g tlttrn>ll microg,.ph rowr-
kJy St"4rt D.;g onil Ccfia Millrtr. 
CSlRO Pf<llll fnJuslry, Cc1t1w• 1997) 
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Habit is hereditary with plants, ... and this leads me to say a 
few words on acclimatisation.As it is extremely conunon for 
distinct species belonging to the same genus to inhabit hot 
and cold countries, if it be true that all the species in the same 
genus are descended from a single parent-form, acclimatisation 
must be readily effected during a long course of descent. It is 
notorious that each species is adapted to the climate of its 
own home: species from an arctic or even from a temperate 
region cannot endure a tropical climate or conversely ... But 
whether or not this adaptation is in most cases very close, we 
have evidence with few plants, of their becoming, to a cer-
tain extent, mturally habituated to different temperatures; 
that is, they become acclimatised: ... 
(Cl1•rlcs Dnnlli11, The Orizi11 of Sp«ia, 1910 cdirio11) 

Fighting ice with ico! Alleviating 
frost damare In a Now Zealand 
orchard wich ovorh cad sprinklers. 
Plant tissues encaJed In ice that is 
conrinuio1 lo Corm will remain at 
o•c, thot u.ju1t above the thresh-
old for injury 
(Origi11nl rhotozrnplt courmr E.W. HC'1<11, 
Mnssry U11iumlty} 
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14.4.4 Concluding remarks 

14.5 Plant heat budgets 
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14.5.3 Sensible heat exchange 
14.5.4 Latent heat transfer 

14.6 Frost and freezing injury 
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With perceptive phrasing, Les Murray (1991) summarises 
structural aspects of a gum forest as: 

'Aooded-gums on creek ground, each tall because of each' 

and in conceptuali.s.ing water relations, 

Foliage builds like a layering splash: ground water drily upheld 
in edge-on, wax-rolled, gall-puckered leaves upon leaves. The 
shoal life of parrots up there. 
(l..tJ Munar (1991), CoUcctcd P~rns) 

A superb stand of .llooded gums 
(Eucalypllu grancfu) near Coffi 
Harbo11r, northern New South 
Wales, 'each lall because of each' 
(!As Murny (1991). Colltcltil p._,) 
(Originnl pltorogrnph by Knr Eltlritlgt, iu1•· 
plitd by Ptrtr Burger, CSJRO Fortslry n114 
Fortll ~durl1) 
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15.4.1 Savanna woodlands 
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15.S Concluding remarks 
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There is a need to optimize the productivity of infertile and 
problem soils in order to meet increasing world-wide 
demand for agricultural and forestry products and we now 
recognise the increasingly important role of selection and 
breeding of pbnts specifically for such soils. Plant breeding 
solutions will complement agronomic methods to achieve 
these objectives in a manner which is both economically 
sound and ecologically responsible 
(R1111tlall 1993; icn/ia iJJtlc4) 

Figure 16.0 A demon•ttation of 
geneti<: dift' .. -ences between two 
varietie• of barley (H~r4twm ... 1,111~) 
in their tolerance to a mut81Ulese-
defident 100 near'Waroob, South 
Australia. Overall crop re1po111e to 
a foliar 1pny equivalent ro 6 kg 
manganeie per hectare 1$ evident 
in shoot growth (middle back-

16.5 Soil acidity and toxicities 
16.5.1 Soil acidification 

g.ound behind arrow). While 
umpnyed plots in lhe foreground 
.,.. IHI produccivc, the cultivar 
WeNh (left side) t olentes this low-
nwtpnese soil better than Clipper 
(right aide) 
(Orjzlnlfl phorogr•plt cowr1tsy R.J Hon11<1111. 

.SO..tb Awslmlim1 Dq•r1mml cf Agritultu~, 
1982) 

16.5.2 Aluminium and manganese toxicity 
16.5.3 Serpentine soils and mine tailings 

16.6 Concluding remarks 
Further reading 
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Salt: an environmental stress 

Salinity, like drought, remains as one of the world's oldest and 
most serious enviromnental problems. Mistakes made by the 
Sumerians in the Tigris and Euphrates basin of Mesopotamia 
over 4000 yeas ago are being repeated today ... 
(McWilliam 19&6} 

Secondary ..Unuacion near Ouyen, 
Victoria, showing a lower ilope 
discharge zone for aaline groUJ1d-
waur. &cablWoed eucal,pts have 
died, and ult ;, eacroachiag up1-
lope into grazing land. Local 
hydrologic balaace was disturbed 
by land clearing which increased 
groundW11t.r accenion and led co a 
subuquent r!Je ia Wiiiet iablH 
(Origin•/ p/lologrttph cowrttsy P.E. 
Kriedn0«nn} 
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17 .2.1 Annual plants 
17.2.2 Perennial plants 
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17.3.3 Organic solutes as metabolic protectants 

17.4 Salt-affected land: utilisation and reclamation 
Further reading 



18 Waterlogging and submergence: surviving 
poor aeration 

After Colonel Byrd discovered and named The Great Dismal 
Sw.unp in seventeenth century America, his disenchantment r-, 
was recorded in the Westover Manuscripts thw: 

... the foul damps ascend without ceasing, corrupt the air and 
render it unfit for respiration ... Never was Rum, that cordial 
of Life, found more necessary than in this Dirty place. 
Cololftl Willim11 Byrd Ill (1929} 'Historits ef rltt Di.-idiotg Unt lklwixt Virginia •ml So11/1 

C<tWlin•' North C4nolin• Historit•I Co111111istion, R•ltigh 

A pumanent body of waler in 
Kalcadu National Park, Northern 
Territory, showing a nnge o( 
species thriving in a flooded eavi· 
tonment. Submetged Nbers of 
N-Jmpli4u l'lolott.s produce long 
underwater stems that support • 
floating leaf, while spectacular 
flowers are supported on pedoles 
projeccing &om the water surface, 
as seen on the book cover. Woody 

Chapter outline 

Introduction 

species that also exhibit tlood tol-
erance can be see.a in the back-
ground: these include the dense 
caaopy of a &eshwater mangrove 
(8orrfo11onl11 '""'""l"fo), • single 
tree (Lopliolttm"" gN1td!Jlon1m up. 
ri14ri.,1) growing In the open water 
and siands of river .red gum 
(E11C4lyptN1 tdm0t411ltrul1) goowing 
along the -terlogged banks 
(Pioot<>graph tolllftsy of S. Jatobs) 

18.1 Waterlogging and submergence of terrestrial plants 
18.1.1 Root-zone aeration · 
CASE STUDY t 8.1 Soybean: the unsuspe.cted paludophyte 
18.1.2 Adaptive responses to waterlogging 
CASE STUDY 18.2 Swamp paperbark: a coloniser of flood-
ed, saline wetlands 

18.2 Seagrasses: angiosperms adapted to sea Boors 
18.2.1 Evolution of seagrasses 
18.2.1 Ecophysiology of seagrasses 
CASE STIJDY 18.3 Seagrasses: suaessful marine macro-
phyks 

Further reading 
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19 .2 Plants coexisting with fue 
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19.3.1 Introduction 
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banks 
19.3.3 Cryptophytes (geophytcs) -plants that grow 

from stonge organs 
19 .3.4 Obligate seeders and resprouters - perennial 

plants that seed or resprout aft.er fire 

... and he looked, and behold, 
the bush burned with fue and 
the bush was not consumed ... 
(Mou.sin the Boolt ofEx11dw) 

Fitts oflH consume the large fuel 
loads produced by cane ~ass at the 
end of each dry season in the Kakadu 
National Puk of northitrn Australia. 
Here a savanna woodland bums v!gor-
oudy, leaving the sderophyllous euca-
lypti blackened but alive and able to 
regrow in the following season (see 
Colour Plate u) 
(Pirottigtnph '°"rtoy of MithMI DougloJ) 

19.4 Impact of climate change and burning practices on 
vegetation 
19.4.1 Introduction 
19.4.2 Pollen evidence indicating changes in vegeta-

tion 
19.4.3 Fire: an ecosystem sculptor 

Further reading 



20 Herbicide resistance: a case of rapid evolution 
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Introduction 

Amid young flowers and tender 
grass '1 
Thy endless infancy shall pass; 
And, singing down thy narrow 
glen, 
Shalt mock the fading race of 
men. 
William Culltt> Bryn11t, 'lk Ri•ulet, 

1794-1878 

Herbicide-resistant Lali11111 rlgi411m 
infesdng railway lines in We$Tern 
Aultralia. FoUowing 10 years of use of 
a11tazlne and amllltOle 10 conlltOI weeds. 
a monoculture of L rlal4um resistanl to 
these cwo herbicides has evolved along• 
side the cracks (see Colour Plate D>) 

20.1 Acquiring resistance to herbicides 
20.1.1 1"'lium rigidum in Australia: a very resistance 

prone weed! 
20.1.2 Rapid development of resisitance 

20.2 Biochemistry of herbicide resistance 
20.2.1 Target site resistance 
20.2.2 Non-target site resistance mechanisms 
20.2.3 Cross-resistance 
20.2.4 Multiple resistance 
20.2.5 Lessons to be learnt from herbicide resistance 

Further reading 


